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Fig. 1: Visual Concept Programming user interface. (a) Summary statistics and configurations; (b) Projection of concept embeddings
in a 2D plane where circle sizes are proportional to the concept sizes; (c) A list of concepts sorted by the number of image segments
belonging to these concepts. A user can click on any concept to select it (blue) for further investigation. Upon selecting a concept,
the list is updated by positioning the top-k relevant concepts (green) adjacent to the selected concept (blue). (d) Concept feature
view shows the distribution of various features (distance to the concept embedding, hue, and semantic tags) of segments assigned to
the selected concept (top row). The second row shows relative distances, sizes, and angles of the segments between two relevant
concepts. The third row shows the projection of the image segments of the selected concept. (e) Scene view shows retrieved images
that match a user-specified labeling function. (f) Shows a history of labeling functions composed by a user. (g) Example images
(blurred for privacy issues) from one real-world semantic segmentation application for autonomous driving.

Abstract— Data-centric AI has emerged as a new research area to systematically engineer the data to land AI models for real-world
applications. As a core method for data-centric AI, data programming helps experts inject domain knowledge into data and label data at
scale using carefully designed labeling functions (e.g., heuristic rules, logistics). Though data programming has shown great success
in the NLP domain, it is challenging to program image data because of a) the challenge to describe images using visual vocabulary
without human annotations and b) lacking efficient tools for data programming of images. We present Visual Concept Programming, a
first-of-its-kind visual analytics approach of using visual concepts to program image data at scale while requiring a few human efforts.
Our approach is built upon three unique components. It first uses a self-supervised learning approach to learn visual representation at
the pixel level and extract a dictionary of visual concepts from images without using any human annotations. The visual concepts
serve as building blocks of labeling functions for experts to inject their domain knowledge. We then design interactive visualizations to
explore and understand visual concepts and compose labeling functions with concepts without writing code. Finally, with the composed
labeling functions, users can label the image data at scale and use the labeled data to refine the pixel-wise visual representation and
concept quality. We evaluate the learned pixel-wise visual representation for the downstream task of semantic segmentation to show
the effectiveness and usefulness of our approach. In addition, we demonstrate how our approach tackles real-world problems of image
retrieval for autonomous driving.
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1 INTRODUCTION

Data-centric AI [25] has emerged as a new research area to advance
machine learning (ML) and land ML models for real-world problems.
In the past, the amazing progress of ML mostly followed a model-
centric approach. Given a dataset, researchers attempt to introduce
human prior knowledge (e.g., model architecture, loss function) into
models and iteratively improve the models to achieve the desired results
(Figure 2, on the left). The assumption is, given a fixed dataset, a well-
designed model can learn useful representation from noisy data and
approximate a prediction goal. However, ML models are becoming
data hungry in the deep learning era. Right now, creating large-scale
annotated datasets is by far a crucial bottleneck to landing deep learning
models for real-world problems [28]. Moreover, once assembled, it
is difficult to adjust the data to a new domain, task, or objective [30].
For example, integrating newly discovered knowledge from domain
experts to a dataset is often desirable, but is not feasible in the existing
training mechanism of deep learning. Increasingly, common model
architectures are becoming a commodity and started to dominate a
wide range of tasks and domains. With model improvement strategies
becoming predictable [11,36], ML practitioners and researchers started
focusing more on a data-centric approach that creates, modifies, and
evaluates appropriate data for a model to learn (Figure 2, on the right).

Data programming [21,28,29,39] serves as a promising approach for
data-centric AI by using human-in-the-loop methods to inject higher-
level supervision into the data and generate weak labels (i.e., labels
that are generated systematically with noisy supervision signals). The
weak labels are then used to learn representation for ML tasks. Figure 3
shows an example of applying data programming for an NLP task
of sentiment prediction. A sentence can be labeled as with positive
sentiment through a labeling function that searches for positives words
in a sentence. Many other functions can be defined and applied to a
large corpus. These weak labels can be used for large-scale model
training. Many data programming approaches [39] have been proposed
and successfully applied to different NLP tasks. The most notable one
is SnorkelAI from Stanford University [28].

While data programming shows promising results in the NLP do-
main, there are still two key challenges for engineering image data:

a) It is challenging to break images into visual vocabularies without
human supervision. Unlike using meaningful words to program text,
it is difficult to describe complex scenarios between objects and parts
in images to build labeling functions. For example, a person can be
defined by a set of body part concepts, including face, hair, hand, etc.

b) We lack an efficient tool to program images. Even with visual
vocabularies that describe objects and parts in images, it is still chal-
lenging to program image data as we need to explore and program an
enormous number of objects and parts to define high-level scenarios.

In this paper, we present, Visual Concept Programming, the first
visual analytics approach of using visual concepts to programming
image data at scale while requiring minimal human efforts. Visual
concepts can be informally defined as groups of image segments with
semantic meanings (e.g., objects and parts). Previous research has
shown that visual concepts are useful for interpreting deep neural
networks [13, 20, 26, 41]. We steer this line of research to a new
dimension, from using concepts for model interpretation to utilizing
them as a vehicle to inject human intelligence into image data at scale.
In turn, the data with human knowledge can improve both the targeting
ML model and the visual concepts.

Our approach first generates a set of visual concepts as fundamental
building blocks to program images with a self-supervised approach
(i.e., self-supervised visual concept generation, with no labels re-
quired). This generation approach is built upon a series of state-of-
the-art ML technologies, including a self-supervised representation
learning method [15] to extract groups of image segments, namely con-
cepts, and a zero-shot vision-language model [27] to assign semantic
tags to the concepts for easy comprehension.

Then our approach provides visualizations to support both con-
cept exploration and concept programming. It enables users to
explore and understand visual concepts with carefully designed rank-
ing, projection, and relation views. For concept programming, it

Loss Function

Architecture

Data

Higher-Level
Supervision

Weak Labels

Model-centric AI Data-centric AI

ModelData Model

… …

Fig. 2: Model-centric AI vs. data-centric AI. In a model-centric ap-
proach, the focus is to iteratively improve the models by introducing
human prior knowledge (e.g., model architecture, loss function) in
model design. In a data-centric approach, researchers focus on acquir-
ing and improving data for better model performance.
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Fig. 3: An example of Data-Programming for an NLP task of sentiment
classification. A sentence can be programmed as positive sentiment
through a labeling function that searches for positives words. Many
other functions can be defined and applied to a large corpus to generate
weak labels. The weak labels can then be used for model training.

provides no-coding user interfaces to compose, verify, and refine
visual labeling functions. For example, a user can create a la-
beling function like a transportation above water is most likely a
boat (ConceptTransportation+above+ConceptWater =ClassBoat in Fig-
ure 1f). The user can retrieve all images matching this function to verify
and revise it (Figure 1e). These labeling functions are then applied to
all images to generate large-scale weak labels (e.g., boat and person).

In our experiments, we show that such weak supervision can improve
the performance of downstream tasks (e.g., image segmentation) as well
as the visual concepts. In summary, our contributions are as follows:

• A novel Visual Concept Programming framework for injecting
human intelligence into image data at scale by utilizing self-
supervision based visual concepts.

• A visual analytics tool that allows subject-matter experts to ex-
plore and understand concepts, interactively compose, verify, and
edit labeling functions without writing code.

• Case studies and experiments demonstrating the effectiveness and
efficiency of Visual Concept Programming for engineering large-
scale image data and its applications for real-world problems,
such as driving scenario creation, retrieval, and validation for
autonomous driving.

To highlight this work, we believe Visual Concept Programming is
the first visual analytics approach to program image data at scale. Its
efficiency comes from self-supervision based visual concepts. This
work is echoing the current ML research trend of Data-Centric AI by
iterating data (e.g., quality or higher-level supervision), not models. It
also explores new research opportunities of applying visual analytics
to inject human knowledge into large-scale data efficiently, by lever-
aging the powerfulness of representation learning (e.g., visual concept
learning) to augment human cognition (e.g., providing higher-level
supervision for complicated data).

2 RELATED WORK

In this section, we review related work in data-centric AI, visual analyt-
ics for deep learning, and concept extraction and exploration.

2.1 Data-centric AI
Data-centric AI is the discipline of systematically engineering data to
build AI systems [1]. Data engineering and feature extraction have
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long been integral parts of developing AI systems. However, with
the advance of deep learning, the need for feature engineering has
rapidly vanished since these models can learn highly discriminative
representations from data. While that is true, the ability to engineer
existing data to a new task is still challenging for machine learning,
especially since obtaining new training data can be a painstaking and
costly process. This is evident from the many semi-supervised, self-
supervised, and weakly-supervised methods proposed over the years.

There are two main approaches to utilizing the data with limited
or no annotations: semi-supervised learning [5] and self-supervised
learning [3]. In semi-supervised settings, there is often a small labeled
dataset and a large unlabeled dataset. The idea is to utilize domain
specific assumptions to exploit unlabeled data that is often cheaply avail-
able. In self-supervised settings such as representation learning [3],
the main objective is to learn useful representation from data without
any labeled data. The learned representation can generalize to many
downstream applications such as classification, detection, few-shot
learning, domain adaptation, reinforcement learning, and generative
models. However, these methods often lack a mechanism to inject
human intelligence efficiently.

Meanwhile, data programming [29, 39], one of the most promising
data-centric approaches, is a method where domain experts write label-
ing functions, domain heuristics that generate weak labels for a dataset.
This is also referred as a weakly-supervised learning approach. The
labels assigned in this way are more scalable than labeling each training
sample separately. This approach achieves state-of-the-art performance
on many downstream applications. Ratner et al. further proposed
Snorkel [28], a system to create labeling functions for large-scale data.

While data programming is shown to be effective for NLP applica-
tions, it is still challenging to program image data. First, there is no
dictionary of visual vocabulary to inject human knowledge for image
data, unlike using meaningful words to program text. In this work, we
adapt the mechanism of data programming for image data. Our visual
labeling functions are implemented by first training a self-supervised
model to extract visual concepts [15], and then using a novel visual
interface to write the labeling functions without coding and train the
model iteratively. In essence, we present a unique approach to program
images built upon self-supervised concept extraction.

2.2 Visual Analytics for Model-centric AI
The majority of visual analytics systems for AI is model-centric.
One dominant research direction along this thread is Explainable AI
(XAI) [17, 32], emerging as a trending topic for explaining deep learn-
ing models. The motivation is to investigate the mechanisms of deep
learning models, as it is imperative to interpret or explain the model
behaviors in many socially sensitive domains such as autonomous driv-
ing [14], healthcare [12], and financing [10] decision-making. Methods
such as LIME [31] and SHAP [23] and visual analytics systems such as
the What-if Tool [37], LSTMVis [33], SUMMIT [18], VASS [16], and
VATLD [14] are examples of solutions that facilitate XAI principles.
While these methods and interfaces were shown to be effective for
their purposes, they were predominantly developed to interpret and
refine task specific models. None of them facilitate data programming
for weak supervision such as ours, shifting the focus of current visual
analytics research from model-centric AI to data-centric AI.

2.3 Visual Analytics for Data Labelling
Another research direction relevant to our work is visual analytics
systems for data labeling [4]. Choi et al. [8] presented AILA, an
interactive interface that helps users label documents efficiently by
highlighting important words in the document. Desmond et al. [9]
proposed an AI-assisted interface that highlights probable labels for
users. Zhang et al. [40] proposed OneLabeler, a system that provides
common modules and states for data labeling. Interactive systems have
also been proposed to verify crowdsourced labeled dataset [22, 38].
While these systems have increased efficiency in data labeling, they
still predominantly depend on crowd workers to label data instances
one by one. As a result, it is costly for model developers to obtain a new
labeled dataset, modify an existing dataset to adjust to a new domain,

or explore new ideas without the need to arrange lengthy data labeling
process. We present a novel visual analytics framework that aims to
solve this problem for image datasets by allowing model developers
to write labeling functions that can label thousands of images. We
utilize visual concepts as building blocks for writing labeling functions,
a unique approach to injecting human intelligence into data labeling.

2.4 Visual Concept Extraction and Exploration
Visual concepts provide a meaningful way to interpret and steer deep
neural networks for vision tasks. Typically, deep neural networks
operate on low level features such as pixel-values and neural activa-
tion. In contrast, humans learn and reason from perceptual groups and
structures (i.e., visual concepts) [2, 6, 13]. We can unravel complex cor-
respondence between concepts, generalize knowledge, and understand
unseen concepts. Similar reasoning power for a vision model can help
it mimic human learning and generalize to multiple downstream appli-
cations. Additionally, visual concepts are human-understandable and
provide a way to quantify the interpretability of a model [13,20,26,41].

Several methods have been proposed for quantifying the interpretabil-
ity of a neural network based on visual concepts. Bau et al. [2] proposed
Network Dissection, a general framework for scoring interpretability of
any hidden layer of a Convolutional Neural Networks (CNN) with re-
spect to a wide range of human-interpretable visual concepts. Similarly,
Kim et al. [20] used directional derivatives to quantify the sensitivity of
ML model predictions for different user-defined concepts.

The above methods are effective in interpreting internal states of a
CNN. However, they require user-defined concepts, which are expen-
sive to annotate. Further, the space of possible concepts to query or
define can be unlimited, or in some settings be unclear. To address
these limitations, researchers have proposed methods to automatically
extract concepts from a neural network [6,13]. However, these methods
are still only applicable in supervised settings only.

Finally, researchers have also used human-in-the-loop approaches to
extract and interpret visual concepts. Zhao et al. [41] proposed Concep-
tExtract, a human-in-the-loop active learning system to extract visual
concepts. Park et al. [26] on the other hand, proposed an automated
and scalable method to extract and visually summarize concepts.

Our work further advances how visual concepts can be extracted not
only to interpret models, but also as the building blocks to program
data and inject human intelligence in a scalable way.

3 METHOD

Figure 4 presents the overview of our visual concept programming
approach. Given an image dataset, we first train a self-supervised
representation learning model to extract a set of visual concepts (Sec-
tion 3.1.1). Each concept is a group of image segments with similar
semantic meanings such as human face and body. Meanwhile, we
use a vision-language model named CLIP [27] to assign tags to each
concept (Section 3.1.2). Then, we build an interactive visual interface
to help users explore and program the visual concepts (Section 3.2). By
programming the visual concepts, users can generate weak labels for
the corresponding image segments (Section 3.3) with concept-based
labeling functions. In the end, with weak supervision, users can retrain
the representation learning model to improve the performance on down-
stream tasks (Section 3.4) and the quality of visual concepts. Users
can again apply visual concept programming to the refined model to
improve both data annotations and model performance iteratively.

3.1 Visual Concept Extraction and Tagging
3.1.1 Self-supervised Visual Concept Extraction
Our approach starts with extracting a set of visual concepts from the
input image dataset without using any human annotations. To this end,
we utilized a self-supervised representation learning approach [15],
which learns the embedding (i.e., a high-dimensional feature vector)
of each pixel to segment images into semantically meaningful regions.
Meanwhile, the image segments are grouped into visual concepts where
each concept captures image segments with similar semantic meanings
such as human face, hair, and body.
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Fig. 4: The framework of visual concept programming. a) Visual concept extraction and tagging component encode large-scale images into a
dictionary of visual concepts through a self-supervised representation learning model. Each visual concept is associated with a group of image
segments that share similar semantic meanings such as human head, hand, etc. The visual concepts are then tagged via a zero-shot vision-language
model, CLIP [27]; b) Interactive visualizations are provided to help users explore and understand the concepts, and also enable users to program
concepts by supporting to compose, verify, and refine labeling functions with visual concepts; c) User generated labeling functions are applied to
large-scale images and generate weak labels for image segments; d) Finally, weak labels are used to retrain the representation learning model to
improve image segments and concepts.

The main idea of the self-supervised learning approach are shown
in Figure 5. Starting from images with pseudo segments generated
by edge detection, different augmentations are generated and fed into
a CNN to produce pixel embeddings. The CNN is then trained to
generate similar pixel embeddings for regions with similar semantic
meanings (please refer to [15] for details). During training, a set of
visual concepts are also updated by clustering the embeddings. After
training, images are segmented by clustering the pixel embeddings
using k-means. For each image segment, we calculate the mean vector
of the pixel embeddings and use it as the embedding of the segment.
Each image segment is then assigned into one visual concept based
on the distance between the embeddings of the segment and the visual
concepts. After the concept extraction process, we have a set of visual
concepts, where each concept contains a group of image segments
with similar semantic meaning and embeddings. Note that while the
model learns pixel-wise embeddings during training, the pixel-wise
embeddings are aggregated into embeddings of segments and concepts
for our visual analytics approach. The embedding of a concept is the
cluster center of embeddings of segments for that concept.

3.1.2 Zero-shot Vision-Language Tagging for Visual Concepts
We used CLIP [27] to tag the extracted visual concepts. The motivation
is to provide high level overview of the visual concepts’ semantic
meaning, in addition to showing image segments of each concept.

CLIP is a vision-language model pre-trained on a large number of
text-image pairs, and its goal is to generate appropriate description for a
given image. CLIP uses a text encoder and an image encoder to get the
embeddings of texts and images. The encoders are trained by attracting
the embeddings of texts and images that are paired and repeling the
embeddings of texts and images that are not.

A pre-trained CLIP model is used to tag the visual concepts as
shown in Figure 5c. Given a concept, we feed the corresponding image
segments into the image encoder and compare their embeddings with
the embeddings of a set of predefined tags. Then we assign the tag with
the closest distance to each image segment in the embedding space.
All predicted tags are aggregated over all image segments within this
concept, and the tag distribution is then computed. The top-k tags (e.g.,
k = 2 in our case) with high frequency are used to describe the concept.

3.2 Data Transformation for Concept Exploration and Pro-
gramming

To develop a visual analytics tool to explore and program the extracted
visual concepts effectively, we need to prepare and transform relevant
data from visual concepts. In this section, we describe data preparation
methods to facilitate both concept exploration and programming.

3.2.1 Visual Concept Exploration
To identify interesting visual concepts, we design two mechanisms to
preprocess the visual concepts: ranking and projection.

Concept Ranking We rank the visual concepts at two levels: global
and local.

a). First, we rank the concepts globally based on the number of
image segments within each concept. With the global ranking, users
can quickly identify visual concepts that cover more data.

b). With a selected concept, we also rank the concepts locally based
on the frequency of cooccurrence with the selected concept. With the
local ranking, users can identify relevant visual concepts and program
the visual concepts based on their relations.

Concept Projection We visually group the concepts by projecting
them into a 2D space at two levels.

a). First, we project the embeddings of the concepts into a 2D space
with UMAP [24]. With the projection, users can locate concepts with
similar semantic meanings, such as the humans head and hair.

b). While exploring a concept of interest, we project the associated
image segments into a 2D space with UMAP. Users can explore subsets
of the concept with the segments projection.

3.2.2 Visual Concept Programming
Using the visual concepts as building blocks, users can define labeling
functions to program the image segments with heuristics and prior
knowledge. For example, if an image contains a transport above water,
the transport is most likely a boat. Hence, the label “boat” can be
assigned to all transport above water. Inspired by previous work [7,
35], we derived several features from the concepts to enrich labeling
functions with our domain experts. The features can be summarized
into two groups - characteristics of concepts and their relations.

First is the concept’s own features, includes:
• Color statistics of each image segment is used to help users form

heuristics with respect to object types and colors.
• Tags of the image segments generated by CLIP are used to help

users understand each concept and provide hints on the class
labels of the segments. Note that we only use tags to provide hints
on concept programming because the tags on individual image
segments are noisy.

• Embedding of each image segment extracted from the self-
supervised model is projected into a 2D space to help users iden-
tify groups of similar segments to assign labels. Meanwhile, their
distance to the concept’s embedding can be used to identify out-
lier image segments, which have a higher chance to belong to a
different type of object.

Second, the characteristics of relations between two concepts are
also important to define labeling functions such as the relative position
of objects [7]. For a specified concept, users can consider the following
relations between this concept with other concepts:

• Geometric properties (e.g., distance, angle, relative size) are used
to define labeling functions by considering image segments’ rela-
tive position and size. For example, the knowledge monitors are
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Fig. 5: Visual concept extraction and tagging module. (a) A self-supervised model is trained on input images that are roughly segmented with
edge detection to generate pixel embeddings that capture the semantic meaning of each pixel. The pixel embeddings are used to segment images
into meaningful regions (e.g., hair, head). (b) Meanwhile, the image segments are grouped into a dictionary of visual concepts. Each visual
concept is then tagged with a vision-language model, CLIP [27], to provide a high-level overview of the concepts. (c) Details on tagging a visual
concept using CLIP. All image segments (Si) assigned to a visual concept are fed into the CLIP image encoder. For each segment, the embedding
similarity between this segment and a set of pre-defined tags (Ti) is used for tag assignment for this segment. The distribution of the tags for this
concept is then computed and the tags with high frequency are used to tag the concept.

often placed on desks can be injected into the data by considering
the relative position of monitors and desks.

• CLIP tags/Weak labels of one concept can be used to infer the
class labels of the other concept’s image segments. For example,
given a concept of tires, it is difficult to tell each tire belongs to a
bus or car. In this case, users can use the CLIP tags/weak labels
(if available) of vehicles’ body to infer the class label of tires.

3.3 Concept Programming based Annotation
When a labeling function is defined by a user, it will be applied to all
image segments, and the segments that satisfy the condition will be
labeled automatically. For example, as shown in Figure 4c, there is one
example labeling function:

Concepttransport +above+Conceptwater =Classboat
As this labeling function is applied, all transports that above water

will be labeled as “boat”. Note our method does not require the labeling
functions to produce 100% accurate labels and the labeling functions
may disagree with each other on certain image segments. To resolve the
conflicts, our method analyzes the labeling functions and uses labels
generated by a more precise labeling function (i.e., a labeling function
that involves more concepts and constraints, and thus covers fewer
segments). Meanwhile, users can also visualize the image segments
with conflicted labels and resolve the conflicts manually.

3.4 Visual Concept Refinement
With the weak labels generated by the labeling functions, users can
retrain the representation learning model [15] with the combination of
self- and weak-supervision.

For the self-supervision, data augmentation and contrastive learn-
ing [15] are used to calculate the self-supervision loss.

The contrastive learning is also extended to weak labels as follows.
Given a pixel p with label c, all image segments of label c are consid-
ered as its positive pairs C+ and the rest of the segments are considered
as its negative pairs C−. Then the weak-supervision loss is defined as:

Lweak(p) =−log
∑s∈C + exp(sim(zp,zs)κ)

∑s∈C +∪C − exp(sim(zp,zs)κ)
, (1)

where zp and zs are the embeddings of a pixel p and segment s, respec-
tively. With the weak-supervision loss, image segments with the same
label are forced to have similar embeddings. The distance between the
embeddings sim(zp,zs) is measured by cosine distance. The concentra-
tion of the embeddings is controlled by a constant κ . In the end, the
self- and weak-supervision losses are combined and used to train the
representation learning model.

4 DESIGN REQUIREMENTS

In this section, we outline the design requirements of an interactive
visual interface for programming visual concepts, guided by our frame-
work discussed above. The requirements broadly fall into two cate-
gories of concept exploration and concept programming. First, we
identify three design requirements for concept exploration:

• R1.1. summarize and explore individual concepts. We need a
starting point for the exploration process. A natural choice is to
design the UI so that the prominent concepts are evident from a
glance. This requires us to sort, filter, and search concepts based
on some predefined metrics.

• R1.2. visualize and understand relations between concepts. We
will need to write labeling functions that outline relationships
between concepts. Thus, once we find a concept of interest from
R1.1, we need to first find concepts that potentially have relation-
ships with that concept. Secondly, we need evidence so that we
can pinpoint how the two concepts are related to each other. We
will need visualizations that appropriately summarize the numeri-
cal evidence (e.g., distance, co-occurrences). We will also need
to examine how the concepts are encoded in the input images for
understanding the semantic relations.

Our second set of requirements relates to composing, verifying, and
refining labeling functions based on visual concepts.

• R2.1. interactively compose labelling functions without writing
code. In current data programming approaches, domain experts
manually write labeling functions [28, 29]. In our case, the label-
ing functions should be generated automatically as users interact
with the concepts in the system.

• R2.2. verify labeling functions. After defining a labelling function,
users should be able to apply it to relevant images and verify the
correctness of a labelling function.

• R2.3. efficiently refine labeling functions. We anticipate that
the labeling functions may need to be refined as new evidences
emerge from the the exploration process. Thus, our system should
provide functionalities to edit the history of labeling functions.

5 THE VISUAL CONCEPT PROGRAMMING USER INTERFACE

The visual interface of Visual Concept Programming is divided into five
coordinated views (Figure 1). We describe each view in detail below.

5.1 Concept Projection and Rank Views
Concept Projection View The view visualizes the concepts’ embed-
dings in a 2D plane (Figure 6). The radius of the circles are set to be
proportional to the number of segments in the concepts. This helps in
finding prominent concepts quickly (R1.1).

Concept Rank View The view visualizes the concepts in a list,
where each row in this list represents one concept. The list is sorted
by concept size to show the prominent concepts at the top (R1.1). To
summarize the concepts effectively, we encoded this view with three
types of information.

First, on the left side of the view, we encode the total number of seg-
ments belonging to each concept using bars encompassing the concept
IDs. Second, in the center, we show sample segments belonging to
each concept. To select the samples for a concept, we sort the segments
based on their distance to the concept’s embedding and then select
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Fig. 6: Interacting with the Concept Projection and Rank View. The
two views are synchronized. a) On hovering over a concept in the
projection/rank view, the sample segments from the concept is enlarged
and highlighted in the rank view. b) A subsequent click on the concept
will update the rank view by positioning the 16 most relevant concepts
adjacent to the clicked concept.

n = 16 segments out of all segments in equal intervals. Figure 6a shows
sample images from Concept 303. Finally, on the right side of the
segments, we show the CLIP tags.

Interactions between the Projection and Rank Views The two
views are synchronized as follows. While a user hovers over a circle
in the concept projection view, the corresponding concept will be
highlighted in the concept rank view and the segments will be enlarged
(Figure 6a). Similarly, a user can hover over a concept in the concept
rank view to enlarge the segments and highlight the concept in the
concept projection view.

A subsequent click on either view will select a concept to focus on,
which is named as the primary concept in this work. Upon selection,
we highlight the primary concept with a blue color in both views. We
also highlight the most relevant (co-occurring) concepts (in green) to
the primary concept in both views (R1.2). In addition, we reorder the
list and position the relevant concepts adjacent to the primary concept
in the concept rank view. For example, Figure 6b shows the list with
C303 as the selected primary concept and C394, C396, and C260 as
the top 3 relevant concepts. Note that each concept shows the number
of co-occurrence with the primary concept using green bars. Users can
select one of the relevant concepts as the secondary concept to explore
its relations to the primary concept.

5.2 Concept Feature View
The Concept Feature View (Figure 1d) visualizes the details of the
primary concept and its relation with an optional secondary concept
(R1.2). Both primary and secondary concept can be selected from the
Concept Projection or Rank View. This feature view is divided into
three rows. In the top row, we show the distribution of segments belong-
ing to the primary concept across three different features: distances to
concept’s embedding, hue, and tags. If a secondary concept is selected,
the bar charts highlight the distribution of the segments that co-occur
with the secondary concept. Users can brush any parts of the three
distributions to select segments of interest.

Similar to the top row, the middle row visualizes distribution of
the secondary concept. By default, the bar charts in this row show
distribution of segments that co-occur with the primary concept. It
visualizes four relative features of the co-occurred segments: distance,
angle, relative size, and tags/weak labels. Users can again brush any
parts of the four distributions to select segments of interest.

Finally, the bottom row shows a projection of the segments belong-
ing to the primary concept (Figure 1d, bottom row). Different from the
concept projection view that provides the global view of all concepts,
this view provides a zoomed-in view of a specific concept by visual-
izing the projection of image segments within the concept as a scatter
plot. This helps users to identify groups and outliers in the concept.
Moreover, the labels of the segments are color encoded in the scatter
plot to help users identify unlabeled data or data with conflicting labels.

a

Select a secondary concept

Filter by CLIP labelFilter by distance

b

=

gc

d
=

f

e

=
h

Lasso Interaction on 
segment projection

Assign Label Assign Label Assign Label

Select a primary concept

Fig. 7: Interaction to write labeling functions. A user starts with
selecting (a) primary and (b) secondary concept from the projection or
rank view. The user can then add different types of optional filters in
the feature view to write the labeling functions. For example, the user
can select segments of interest by applying a distance filter (c) and then
assign a label to the selected segments (d). The user can apply a lasso
selection on the projection of the segments belonging to the primary
concept in the feature view (e) and then assign a label to the selected
segments (f). The user can also use the CLIP tags to filter the data (g)
and (h).

Interacting with the visualizations in this view helps users write la-
beling functions (R2.1). A labeling function is automatically updated in
the scene view when users interact with the feature view. For example,
Figure 7 shows how a user can iteratively update a labeling function by
interacting with the feature view.

5.3 Scene View
The scene view (Figure 1e) is designed to show segments and concepts
in the context of the whole images. When a primary concept is selected,
the scene view is updated with the images containing the segments
from primary concept. The segments are highlighted with a blue mask
in the images. When a secondary concept is selected, the scene view
is updated with the images that contain both primary and secondary
concept together (R2.2). Segments from the secondary concept is high-
lighted using a green mask. When users updating the labeling function,
the images that satisfies the function are automatically retrieved and
visualized in the scene view.

5.4 Labeling Rules View
The final output of Visual Concept Programming is a set of rules
outlined by the labeling functions. The labeling rules appear in two
places in the interface. First, when users interact with the various views
in the interface, a labeling rule is automatically created and visualized
in the scene view (Figure 1e). Users can choose to save this rule in
the labeling rules view and later refine and export all the rules to label
the data for retraining the representation learning model (R2.3). The
labeling rules view shows the history of rules (Figure 1f). Each rule
here is assigned an ID and shows the rule and the number of segments
covered by the rule. Users can use this list to go back to prior rules and
refine them as required (R2.3).

6 CASE STUDIES AND EVALUATION

We worked closely with three MLOps developers from the product team
of autonomous driving and evaluated the usefulness and effectiveness
of our approach. We worked on two use cases: 1) A public semantic
segmentation benchmark dataset, PASCAL VOC, to validate this ap-
proach as a Proof of Concept (PoC) engagement; 2) An internal dataset
showing cases of applying this approach to MLOps of perception tasks
for autonomous driving.

6.1 Improving the Performance of Semantic Segmentation
In this use case, we worked with the developers on a standard semantic
segmentation task to validate and benchmark our approach. The goal
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Fig. 8: (a) Visual concept (C176) of ground transportation’s body. (b-e)
Sample images of C176, which include body of bus, train, and car
(highlighted in blue).
is to use visual concept programming to improve the performance of
semantic segmentation.

6.1.1 Experiment Setup
Dataset We use the Pascal VOC 2012 dataset for this use case, which
contains 20 object classes and one background class. We use the
train aug set with 10,582 images for the visual concept programming
and evaluate model performance on the val set with 1,449 images.
For self-supervised pre-training, we follow this work [15] with pseudo
segmentations generated by HED-owt-ucm [19].

Training and testing The hyper-parameters for training are set
as follow. The embedding dimension is set to 32 and the size of the
concept dictionary is set to 512. We train the model on the train aug
set with pseudo segments (and weak labels in the refinement stage) for
5k iterations with a batch size of 8. The learning rate is initialized to
0.001 and decayed with a poly learning rate policy.

The semantic segmentation is then generated on the val set using
k-means clustering proposed in [19]. For each image, we first cluster
the pixels into segments based on their embeddings. Then each seg-
ment is assigned a class label based on the majority vote of its nearest
neighbors in the training set. Note that here we use the labels in the
training set only for the purpose of evaluation. The labels are not used
during training. We cluster each image into 25 segments and use 15
nearest neighbors in the training set to get the class label of the seg-
ments. The performance of the segmentation results are then evaluated
using Intersection-over-Union (IoU), which measures the ratio of the
intersection and union of the prediction and ground truth segments.

Iterative Concept Programming We worked with the model
developers to program visual concepts through an iterative process. In
each iteration, developers perform the following steps:

• Select one type of object by comparing model performance with
the previous iteration.

• Find the concepts related to the selected type of object based on
the tags.

• Define labeling functions to program the filtered concepts and
generate weak labels.

• Retrain the model with the weak labels and evaluate the model’s
performance.

Developers will end the process when they are satisfied with the perfor-
mance improvement.

6.1.2 Evaluation Results
Iteration 1: Programming for Bus

The developers first check the model’s performance as shown in
Table 1, where the first row is the performance of the state-of-art (SOTA)
unsupervised approach [34] and the second row is our baseline model
with only self-supervision. They find that the performance of ground
transportation such as bus and train doesn’t improve much compared
with SOTA. Hence, they decide to start with a dominant category of
Bus. Here, concept C176 (Figure 8a) is used as an example, which
mostly captures body of a bus and is tagged as bus and truck (Figure 8b-
c). However, by examining the image examples of C176, developers
find this concept also contains the body of trains (Figure 8d) and cars
(Figure 8e). This finding triggers them to build labeling functions to
separate the three types of ground transportation in C176.

To build labeling functions for trains, developers examine the con-
cepts that relate to C176 and identify C90 is corresponding to rails.
Then, they build a labeling function indicating that a transportation
running above rail is more likely to be a train instead of a bus:

=

=

a

b

Fig. 9: Labeling functions to annotate (a) trains and (b) cars in Concept
C176 and related sample images.

C176(GroundTransportation) + angle[−0.06,30.1](above) +
C90(Rail) = train

The image segments that matches this labeling function are then
labeled as train automatically. The annotation results are shown in the
scatter plot in Figure 9a, where the dark blue dots are image segments
that satisfies the labeling function. We can see that most of the trains
are in the top right of the projection space. Meanwhile, there are a few
outliers in other regions of the projection space, such as the bus driving
in snow, whose label can be corrected by lasso selection of those data
points. Similarly, labeling functions can be used to annotate cars in
C176. For example, developers find a concept of car window (C440)
and use it to build a labeling function:

C176(GroundTransportation) + angle[−3.11,0.39](below) +
CC440(CarWindow) = car

that annotates the cars as shown in Figure 9b. After identifying trains
and cars, the rest segments are labeled as bus.

Iteration 1: Performance after Bus Programmed
After programming the concepts related to buses, the model is trained

on the generated labels and tested on the validation dataset, which
takes around 2 and 1.5 hours, respectively. The results are shown in
the third row of Table 1. We can see that as the developers inject
knowledge about classes of bus, car, and train, the performance of the
three classes improved by a large margin comparing with the strong
baseline (+1.17, +1.62, and +2.17 for bus, car, and train, respectively).
However, we also observe that the overall performance drops. This
is mainly because the noise introduced by the weak labels affects
the model’s performance on classes without annotations. Hence, the
developers decide to program other classes to alleviate the influence
of the noise by adding more supervision to guide the training of other
classes.

By comparing the performance of the current model with the base-
line, the developers find that the performance of farm animals such
as cow, horse, and sheep drops significantly. Hence, they decide to
program the concepts related to one type of farm animal such as cow in
the second iteration.

Iteration 2: Programming for Cow
After examining the concepts relate to cow (Figure 10a), developers

find that different concepts capture different parts of animals such as
head, body, and foot. However, within each concept, there could be
parts from different types of animals such as cow, horse, sheep, and
dog. Hence, different labeling functions are built to annotate each type
of these animals. For animals head and body, developers find that tags
and embedding projections can be used to classify different types of
animals. For animals foot, it is a bit challenging to use the tags or
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Table 1: Performance improvement with visual concept programming on the PASCOL VOC 2012 dataset, measured by IoU (larger is better).

background aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv all
SOTA [34] 86.00 62.99 23.63 56.08 45.28 61.31 74.68 71.33 64.89 6.70 46.55 35.21 63.80 46.67 58.83 58.03 32.53 60.07 29.69 67.17 47.95 52.35
baseline 91.02 80.47 33.93 80.42 59.93 67.15 81.94 74.00 83.25 19.00 52.45 50.85 76.12 54.41 66.89 75.63 37.97 65.57 34.47 70.07 58.34 62.56
ours (bus) 90.98 77.36 32.03 77.65 58.58 67.73 83.11 75.62 79.68 18.45 50.02 50.08 69.61 54.63 63.07 76.71 31.5 58.17 34.00 72.24 57.73 60.91
ours (bus + cow) 91.01 77.77 32.78 78.48 56.69 68.46 83.93 75.9 82.29 18.99 59.81 47.81 74.24 58.87 64.06 75.58 31.9 63.07 34.53 70.83 59.71 62.22
ours (bus + cow + plant) 91.05 76.8 33.69 79.99 57.94 67.12 82.4 76.61 81.99 17.71 58.67 49.94 74.6 58.48 64.74 76.63 41.6 64.93 35.1 71.31 60.56 62.95
ours (all) 91.32 79.45 33.8 82.44 62.68 70.09 84.82 76.2 84.88 18.58 54.12 53.6 78.79 57.15 68.31 76.09 44.4 63.31 40.58 76.23 64.21 64.81
with ground truth 91.50 79.93 33.83 82.09 63.32 69.57 85.80 76.21 86.34 22.3 58.88 55.29 80.8 59.14 69.03 77.54 46.52 65.94 39.03 76.25 62.55 65.80

Table 2: Number of concepts, labeling functions, and coverage for bus,
cow, plant, and all classes. The ratio between the number of labeling
functions and the segments it can label is used to measure the relative
effort of creating the labeling functions.

#concepts #labeling functions / relative effort coverage (#segments / %)
bus 17 137 / 0.020 6965 / 7%
cow 25 229 / 0.023 9573 / 9%
plant 15 65 / 0.017 3752 / 4%
all 512 1363 / 0.013 102445 / 100%

===
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Fig. 10: (a) Example of concepts related to cow. (b)-(d) Example
labeling functions to label different body parts of animals.

the embedding projections of it’s own because feet of cow, horse, and
sheep are hard to differentiate. Hence, developers combine feet with
head/body and use the features (e.g., tags) of head/body to label them
(examples are shown in Figure 10b-d).

Iteration 2: Performance after Cow Programmed
After training the model on the new labels, the results are shown

in the 4th row of Table 1. Developers find that the performance of
cow and horse are improved significantly comparing with the baseline
(+7.36 and +4.46 for cow and horse respectively). The performance
of sheep is also improved comparing with the previous iteration.

Iteration 3: Programming and Improving Plant
As the performance of plant drops the most in the previous iteration,

developers program concepts related to plant in the 3rd iteration. By
retraining the model with the annotations on plant, they observe that
the performance of plant improved by a large margin comparing with
previous interactions. More importantly, the overall performance of the
model starts to outperform the baseline in this interaction (5th row of
Table 1).

Iteration N: Final Results
After around 10 iterations, all visual concepts have been labeled and

the final results are shown in the 6th row of Table 1. We can see that
the overall performance of the refined model outperforms the baseline
more than 2.3% in terms of IoU. For comparison, we also annotate all
image segments using the ground truth label and train a model on the
annotated data. The results are shown in the 7th row of Table 1. We
can see that our method performs only slightly worse than the model
trained on ground truth annotations.

The developers are also interested in the quality of the visual con-
cepts with respect to the downstream task after programming. To this

Fig. 11: Comparison of purity distribution between the baseline and
our approach. The number of concepts with purity less than 0.7 is
decreased significantly using our approach.

end, we measure the purity of each visual concept as follows. We find
the major class of each visual concept based on the ground truth and
calculate the purity as the percentage of image segments that belong
to the major class. Figure 11 compares the purity distribution between
the baseline and our approach. The developers find that the number of
concepts with low purity (i.e., purity less than 0.7) is decreased by 7%
with our approach.

In addition, Table 2 shows the statistics about the labeling functions.
Comparing with drawing and labeling the image segments manually,
annotating the image segments with labeling functions is more efficient
(e.g., the ratio between the number of labeling functions and the image
segments it can label is around 0.02).

Model Iteration Summary
With visual concept programming, developers are able to improve:

a) model performance on downstream semantic segmentation task by
over 2.3% and b) concept quality with respect to the downstream task
by reducing the number of low purity concepts by 7%. Moreover,
the effort to get the performance gain is much lower than manually
annotating the images.

6.2 Scenario Creation and Model Validation
Our approach can be applied on a broader range of applications beyond
data labeling. In this case study, we demonstrate how to create test
scenarios and validate a semantic segmentation model using our tool.

Dataset We worked with the developers on an internal autonomous
driving dataset, which contains tens of thousands of driving scene
images captured from fleets. There are no semantic segmentation labels
created for the dataset because of the cost. Hence, the developers
cannot use the ground truth labels to evaluate the model and exam the
failure cases.

Scenario Creation To help developers understand the data, we
apply our method on it and use visual concepts to create scenarios
and retrieve images of their interest. Figure 12 shows one example of
scenario creation. In this example, developers want to create scenarios
that relates to person and traffic light. To this end, developers first
identify the person and traffic light concepts in the concept rank view
(Figure 12a). Then they combine the two concepts and add more
constrains to create specific scenarios. For example, developers limit
the distance between a person and traffic light such that they can retrieve
images that contains a person standing very close to a traffic light
(Figure 12b). Many other scenarios can be created with different
combinations of visual concepts.

Model Validation With the ability of creating different scenarios
and retrieve the corresponding images, developers can use the scenar-
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Fig. 12: Example of scenario creation and image retrieval. (a) Concepts
of person and traffic light are identified. (b) and (c) Constrain the
distance between the two concepts to create scenarios such as person
standing under a traffic light.

a

b

Fig. 13: Example on model validation. (a) Concepts of traffic light and
traffic sign are selected to test a semantic segmentation model. (b) The
performance of the model is poor while a traffic sign (green) is located
on the top right of a traffic light (purple).

ios to test the model’s performance. To efficiently evaluate model’s
performance, we combine the model’s prediction results with the re-
trieved images. Figure 13 shows an example of model validation results.
Developers examined the combination of traffic light and traffic sign
to test the model. They found that while a traffic sign is located on
the top right of a traffic light, the model is not able to segment traffic
lights (purple) and traffic signs (green) accurately. While the model
performs well as a traffic sign is located on the top of a traffic light. The
developers found the results very interesting as they never thought that
the relative position between the traffic light and traffic signs would
affect model’s performance dramatically.

6.3 Domain Experts Feedback

We conduct two case studies (Section 6.1 and 6.2) with the three MLOps
developers introduced in 6, who have over 5 years of experience in
operating ML models for autonomous driving. We work with the
developers to come up with labeling functions using our tool and
refine models based on the weak labels. We conclude the studies with
open-ended interviews and discussions, and summarize the developers’
feedback from the following perspectives.

Efficient Concept Exploration Overall, the developers feel our
tool “is really needed” for exploring large scale image data and creat-
ing scenarios of interest. They liked the idea of summarizing image
data with a concept dictionary, which is “straightforward and explain-
able”. In particular, they found “the tags are important to help them
understand and explore the concepts”. In addition, the developers liked
the way of combining concepts to create specific scenarios and they
found it is “quite beneficial” for retrieving images from large scale data
without labels. Moreover, they also thought using the created scenarios
for model validation is “very helpful”.

Scalable Data Annotation with Concept Programming Overall,
developers “liked” the idea of annotating data by programming visual
concepts. As the developers often work with large amounts of unla-
belled data, having a tool to inject their knowledge into data is “needed”
for model development. Even the automatically generated labels are not
100% accurate, it is already “very useful” to test developers’ hypothesis
and help them quick identify data that require labels. The developers

were also “impressed” by the performance improvement.
Improvement The developers also suggested improvements in

terms of the visual analytics system. Overall, they feel “the system
takes a few moments to digest”. In particular, they thought “it is not
immediately understandable how the concepts are ranked”. It would
be better to provide some hints on it and give more options on how to
rank the concepts. They also would like to have the functionality that
let them “rank the labeling functions”.

7 DISCUSSION, LIMITATIONS, AND FUTURE WORK

How to select the most valuable data to label Although visual
concept programming has reduced the effort to label data, developers
still need to explore and define labeling functions for hundreds of
concepts. Hence, it is an important and interesting question to identify
the visual concepts that influence model performance the most. This
can be linked to another thread of work in Data-centric AI called data
valuation, which aims to identify data points that contribute the most
to the accuracy/mistakes of AI models. In the future, we would like
to quantify the value of each visual concept such that developers can
focus on high value concepts to get performance gain with less effort.

How to provide interactive feedback The current approach lacks
interactive feedback on how the labels will affect model performance
as it often takes hours to retrain a model. In the future, we would like to
explore methods for approximating the performance change after data
labeling. We believe it could all benefit concept and data selection.

How to select proper labeling functions The quality of labeling
functions has high impact on the accuracy of weak labels and hence the
model’s performance. In this work, developers need to define labeling
functions by examining different combinations of concepts as well as
features such as tags and embedding projections. In the future, we
would like to study the importance of the features for concepts and give
experts suggestions/templates on how to compose a labeling function.

How to balance the self- and weak-supervision As weak labels
generated by visual concept programming are often noisy and only
cover a subset of data, self-supervision still plays an important role in
model training. Hence, it worth to explore that how the self- and weak-
supervision affect each other and how to fuse them during training.

Improving model performance on downstream tasks We notice
that the proposed approach depends on a series of upstream models such
as concept extraction and tagging models, which may introduce noise
to the data. Although we have demonstrated performance improvement
using the noise labels, there are several directions we want to explore to
further improve our approach. On one hand, we would like to improve
the performance of upstream models, such as more accurate image
segments for concepts. On the other hand, we would like to explore
training methods that take label noises into account.

Other future work We would like to improve the visual analytics
system based on the developers’ feedback, including providing more
options to rank the concepts, enabling them to compare and rank dif-
ferent labeling functions, and analyze the relationships with more than
two concepts.

8 CONCLUSION

This is a first-of-its-kind work that combines visual anlytics with data-
centric AI to inject human knowledge into image data at scale. The in-
troduced Visual Concept Programming approach uses self-supervision
to learn pixel-wise embeddings and extract visual vocabulary, namely a
dictionary of visual concepts, from unlabeled image data. Then a visual
analytics tool is designed to explore the concepts and create labeling
functions to program the concepts. With the labeling functions, human
knowledge can be injected into data at scale by generating weak labels
for pixels automatically. The weak labels are then used to improve
the pixel embeddings for downstream tasks. We hope this work can
trigger some new research questions of applying visual analytics to
inject human knowledge into large-scale data efficiently with the help
of powerful representation learning (e.g., self-supervised visual concept
extraction) for human cognition augmentation.
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