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Figure 1: Sonification of a bar chart with Susurrus. (a) Our technique maps each bar to a natural sound drawn from an ambient

theme (e.g., forest and birds). Using Loudness Levels Relative to Full Scale (LUFS), we convey the data values by setting the

loudness of the sounds in decibels proportionately (i.e., height) to the bars. In this instance, we have mapped four bars in a bar

chart to four bird sounds (e.g., robin, woodpecker, raven, and dove). We play the sounds together (i.e., in parallel) in a loop with

random intervals and use a calm forest ambiance as background, thus making sonification of the bar chart similar to listening

to bird sounds in the forest. (b) A user can interact with the audio graph using specific keys. For example, the user can select

the first two bars using 1 and 2 number keys and listen to the corresponding sounds. With the selection, the user can also listen

to the description of the selected data values using Text-to-Speech. The audio for this example is provided in the supplement.
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ABSTRACT

Sonification translates data into non-speech audio. Such auditory
representations can make data visualization accessible to people
who are blind or have low vision (BLV). This paper presents a soni-
fication method for translating common data visualization into a
blend of natural sounds. We hypothesize that people’s familiarity
with sounds drawn from nature, such as birds singing in a forest,
and their ability to listen to these sounds in parallel, will enable BLV
users to perceive multiple data points being sonified at the same
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time. Informed by an extensive literature review and a preliminary
study with 5 BLV participants, we designed an accessible data rep-
resentation tool, Susurrus, that combines our sonification method
with other accessibility features, such as keyboard interaction and
text-to-speech feedback. Finally, we conducted a user study with 12
BLV participants and report the potential and application of natural
sounds for sonification compared to existing sonification tools.
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1 INTRODUCTION

Data visualization is becoming commonplace in many domains—
from data science and machine learning to online newspapers,
business intelligence, medical science, and elementary school edu-
cation. This proliferation makes it imperative that visualizations
are accessible to people from diverse backgrounds. However, due to
their visual nature, people who are blind and have low vision (BLV)1
often cannot access them [19, 55, 60]. In response, the accessibility
and visualization field have recently embarked on a significant en-
terprise of increasing the accessibility of data visualizations for BLV
users [41, 57, 61, 74, 75]. Sonification [25], the representation of data
using non-verbal audio, has seen success in this regard. Sonification
can be used as a standalone solution [69] or combined with other
accessibility features such as text-to-speech (TTS) and alternative
text (alt-text) generation [57, 74, 75]. However, several challenges
persist, including perceiving multiple sounds, the role of attention
in the process, and dynamic sound perception [36]. Some of these
unsolved challenges have contributed to sonification enjoying only
limited deployment in the field and none in commercial data visual-
ization products, such as Tableau or Spotfire, despite the area being
more than 30 years old.

In this paper, we address some of these perceptual aspects by
proposing a novel sonification technique that uses ambient sounds
drawn from nature—such as birds chirping, rain dripping, or waves
crashing—for representing data. We believe such natural sounds
are well suited for sonification since humans are familiar with
them from birth. We perceive them on a daily basis while walk-
ing, running, or just existing in nature. In fact, blind individuals
routinely use natural sounds for navigation [9], suggesting that
natural sounds are central to sensing the surroundings. Moreover,
they have a positive impact on health and wellbeing [7], including
calming the mind [53], reducing stress [1, 50], increasing atten-
tion [4, 50], and enhancing mood [32, 33]. They also evoke a similar
1While we generally use people-first language when referring to people with
disabilities—e.g., “person who is blind”—we note that the Blind community often
does not make this distinction; i.e., the term “blind person” is acceptable, and often
preferable, to many people who are blind or have low vision [23].

response in the human brain’s early visual cortex [68], regardless
of a person’s visual ability.

Our work draws on the rich literature in audiology, psychoacous-
tics, digital signal processing, and accessible data representation.
Informed by the literature and a pilot study with 5 BLV participants
(§6), we designed a natural sound-based sonification prototype,
Susurrus. The key features of Susurrus include (1) using Loudness
Levels Relative to Full Scale (LUFS) [51] for conveying data values;
(2) sonification of multiple data values together (i.e., in parallel),
instead of the current norm of playing the data values serially,
one after one (e.g., [2, 8, 57]); and (3) supporting common audi-
tory information-seeking actions (AISA) [74] with a keyboard, the
primary mode of interaction for BLV screen reader users.

We then used Susurrus to conduct a user study with 12 BLV
participants, where we compared natural sounds to a traditional
sonification approach using artificial sounds. Our findings suggest
that natural sound-based sonification (1) can support commonly
used data operations in bar, line, and scatter plots; (2) is better
suited to represent charts representing multiple categories (e.g.,
bar charts); (3) is most useful to users who do not have musical
training and have difficulties in differentiating pitch; and (4) has
hedonic value for enjoyment, relaxation, emotional connection, and
personalizing. Based on these findings, we conclude that natural
sound-based sonification is a promising approach to making data
more accessible. In sum, our contributions are as follows:

(1) We show that natural sounds that are generally considered
as ambient noise have distinctive expressive patterns that
can be harnessed to represent data;

(2) We propose Susurrus, a sonification tool that implements
our technique for representing common charts (e.g., bar,
scatter, line) using natural sounds; and

(3) We report on a user study with 12 blind participants to com-
pare Susurrus with existing sonification tools.

The remainder of the paper is organized as follows. In Section 2,
we describe sound and sonification concepts relevant to our method.
Section 3 discusses accessible data representation literature. Draw-
ing on the literature review, in Section 4, we present the design space
for accessible data representation with natural sounds. Section 5
presents the initial design of the Susurrus tool. Sections 6 and 7
present our pilot study and the revised prototype. Section 8 presents
the evaluation of Susurrus with 12 BLV participants. Finally, we
discuss and conclude the broader impact and design implications
of Susurrus in Sections 9 and 10.

2 BACKGROUND: SOUND AND SONIFICATION

Here we briefly describe relevant theories, concepts, and terminolo-
gies to position our work in the literature and contextualize our
contribution.

2.1 Periodic and Aperiodic Sounds

A sound is generated by a vibrating object (e.g., vocal cords, string,
or wind) that displaces air molecules, resulting in local regions of
compression and rarefaction, which travels through the air as a
wave. This change in pressure with time can be visualized as a
waveform, where the 𝑥-axis represents the time, and the 𝑦-axis
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Figure 2: Periodic and aperiodic sounds. (a) Different types of periodic and aperiodic sounds. Existing sonification tools for

accessible data representation predominantly use both simple and complex periodic sounds. In contrast, Susurrus uses natural

sounds, and thus it falls under complex aperiodic sounds. (b) Equal loudness contours or Fletcher-Munson curves (red) from ISO

226:2003 revision. The original ISO standard is shown in blue for 40-phons [38]. Here, the X-axis represents sound frequency

(logarithmically spaced); the Y-axis represents the sound pressure level (in dB SPL); and each curve or contour line indicates a

fixed loudness (measured in phons).

represents the air pressure (Figure 2a). A waveform is periodic if
the alternating air pressure repeats regularly; aperiodic otherwise.

The simplest type of periodic waveform is a single sine wave
(sinusoid), as shown in Figure 2a (bottom-left). Most sinusoids are
generated artificially (e.g., using computers) and can be used to
prototype the acoustic realization of a musical note [44]. Often,
a sinusoid is referred to as a pure tone and is the basis of data
sonification in prior work.

A complex periodic waveform (e.g., a musical note) is a superposi-
tion of multiple sinusoids, each with its own frequency, amplitude,
and phase. Figure 2a (second from the left) shows a complex periodic
sound waveform made up of 3 sinusoids: all have equal amplitudes
and zero phases but varying frequencies (e.g., 2 Hz, 4 Hz, and 8 Hz).
The lowest frequency among the constituent sinusoids is called
the fundamental frequency (2 Hz in the example). Like simple peri-
odic sounds, complex periodic sounds (e.g., musical notes) are also
extensively used in data sonification. Our technique departs from
prior work as we investigate the data sonification with complex
aperiodic sounds.

Complex aperiodic sound waves do not exhibit patterns (e.g.,
repetition, well-defined frequencies) in air pressure, as shown in
Figure 2a (third from the left). Most environmental sounds (e.g.,
traffic, coffee shop, forest, and rain) fall under this category. In
sonification research, the such sound is often referred to as audio
icons [25], a distinct auditory category. Our technique synthesizes
aperiodic, ambient sound for a certain duration and plays it in a
loop to add periodicity. Users can adjust the duration dynamically
and pause (or play) the loop at any time.

Some aperiodic sound waves are transient (e.g., a pulse, a pop-
ping sound, and a clicking sound), as shown in Figure 2a (bottom-
right) [22]. To our knowledge, transient sounds are not used in data
representation but for notifications. We used a short-beep transient
sound to indicate the end of a loop.

2.2 Frequency vs. Pitch

Frequency is an objective property of a sound (i.e., the number
of cycles per second). The audible frequency range for humans is
between 20 Hz to 20 kHz. Pitch, on the other hand, is the perception
of frequency in humans and is measured in Mels; humans perceive
two frequencies similarly if they differ by a power of two [43, 76].
For example, musical notes with fundamental frequencies (i.e., the
lowest frequency in a complex periodic sound) of 440 Hz and 880
Hz belong to the same note A. These notes are said to be one octave
apart, where the former (440 Hz) has a low pitch (e.g., A4), and
the latter (880 Hz) has a high pitch (e.g., A5). Most prior work on
sonification (e.g., iSonic [74]) mapped data to pitch.

Prior work on psychoacoustics reports that an octave can be
divided into 1,200 units or cents, and most individuals can recognize
pitch differences of 25 cents [44]. Trained musicians, in contrast,
can recognize pitch differences of as small as 10 cents: a 60% higher
recognition resolution compared to untrained individuals. We ob-
served this phenomenon in our study: participants with a musical
background performed better on a pitch-based sonification system
than those without a musical background.

2.3 Factors Affecting the Perceived Loudness in

Analog Sounds

Loudness is a subjective measure of human perception of sound
that correlates with sound pressure and frequency. Sound pres-
sure is an objective measure related to the physical property of an
analog sound wave. It indicates how much the local air pressure
deviates from the atmospheric pressure caused by a sound wave
(unit: pascal). Humans can perceive the minimum sound pressure
of 2𝑥10−5 pascal, which serves as the reference sound pressure.
Psychoacoustics studies [43, 76] report that humans perceive sound
pressure level (SPL) on a decibel scale (dB SPL) as the log-ratio of a
given pressure to the reference pressure.
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Loudness also correlateswith sound frequencies, following Fletcher-
Munson curves (Figure 2b). In this figure, each curve indicates an
equal perception of the loudness of a sound in relation to different
frequencies (X-axis) and sound pressure levels (Y-axis). Since we
map data to perceived loudness, these curves are particularly in-
teresting. However, we cannot directly use these curves because
the sound pressure level (Y-axis) is a physical property of analog
sounds that is lost when we convert an analog sound into digital
audio. The next section describes this process.

2.4 Factors Affecting the Perceived Loudness in

Digital Sounds

Decibels relative to full scale (dbFS). An analog sound is first con-
verted into digital sounds by drawing samples at least twice the rate
of the frequency [67]. In digital sound, decibels relative to full scale
(dB FS) is a unit of measurement of a signal level relative to full
scale (FS). It is equivalent to the sound pressure of analog sound.
The full scale depends on the number of bits used to represent
individual audio samples. For example, the maximum possible level
of a sample in a 16-bit digital audio system is 32,767 (i.e., 216−1 − 1).
Thus, the full scale or FS of this system is 32,767. A sound of 0 dBFS
indicates that it peaks at the FS. Similarly, another sound of -18 dBFS
indicates that it peaks 18 dB below the FS.

Loudness Levels Relative to Full Scale (LUFS) is the unit for subjec-
tive loudness levels relative to full scale (FS), calculated by the ITU-
R BS.1770 algorithm [51]. This algorithm approximates Fletcher-
Munson curves (Figure 2b) for digital audio. LUFS is now being
used by streaming companies to normalize the loudness of audio
on their platforms. We use the loudness range between -11 LUFS
(loud) to -23 LUFS (quiet), following the range used by Spotify [63].

Distance and Duration. Loudness is also a function of the distance
between the sound source and the listener, as well as the duration
of a sound [44, 71]. These two factors are easily controllable by
wearing headphones (which keeps the distance between the sound
source and the ears to 3 centimeters) and keeping the duration
approximately equal.

2.5 Timbre of a Sound

The timbre of a sound is another perceptual property [54] similar
to pitch and loudness. It allows listeners to distinguish the musical
note of different instruments in the same category (e.g., a violin,
an oboe, or a trumpet) even if the same note is played at the same
pitch (e.g., A4) and with the same loudness [44]. Prior work in soni-
fication has used timbre to represent two independent categories
(e.g., piano notes for category 1 and acoustics guitar for category
2) [70]. Although timbre is associated with musical instruments,
we observe this timbre-like property in natural sounds within the
same category (e.g., birdsong). For example, humans can easily
distinguish the sound of a robin from that of a chickadee. This
observation also inspires our design.

3 RELATEDWORK

Our work is related to prior research on accessible and multimodal
data representation, especially with sonification.We briefly describe
research in these areas below.

3.1 Accessible Data Representation

Recent research has outlined accessibility issues with data visual-
ization, such as the lack of informative alternate texts and support
for perceiving trends and overview from data [9, 18, 19, 29, 30, 40,
55, 60]. Several efforts are starting to address these concerns using
alternate sensory mediums such as touch, smell, and audio.

Examples of tactile interfaces include physical bar charts [20, 21,
65, 66], tactile feedback based interpretation of 2D information [72],
3D printed tangible maps [26, 31], and wheeled robots for physical
data visualizations [37]. In contrast, the field of smell-based (olfac-
tory) representations is much smaller. Patnaik et al. [47] explored
the olfactory system by conveying data through scents. A follow-
up paper based on this work provided a ranking of the sensory
channels through a perception study [3].

While effective, both tactile and smell-based systems require
external hardware and are only applicable to specific data types (e.g.,
bar charts), thus making their applicability limited to a lab or a data
domain. In contrast, the majority of data visualizations today appear
on the web. Thus, researchers have called for accessibility solutions
that are flexible, can work in web browsers, are compatible with
screen-readers, and do not require any external hardware [55, 60].

A promising research direction is improving alternate texts that
BLV users can access using screen readers to gather data insights.
However, the utility of alt-texts depends on their quality, which
is directly related to the effort that chart creators are willing to
invest [30]. Recent research suggests alt-texts on the web are largely
non-existent, and even if they exist, they vary in terms of structure,
quality, and content [30, 41]. Alt-texts also do not allow BLV users to
explore and interact with a visualization [41, 57, 60]. Thus, there is
significant research on improving the quality of alternate texts [75]
as well as novel tools that allow users to interact with a visualization
non-visually [2, 8, 57]. One of the promising non-visual methods is
Sonification, which we discuss next.

3.2 Sonification for Accessible Data

Representation

Sonification creates data representations using non-speech au-
dio [36]. While sonification has many uses for art, design, and
ambient data, it is particularly powerful for representing data to
BLV users because of its non-visual property. When applied to
represent data, sonification is often referred to as audio graphs [57].
The Sonification Sandbox [69] and iSonic [74] are early examples
of audio graphs. Highcharts [8] extends Sonification Sandbox and
integrates sonification in a Javascript-based commercial data visu-
alization library. Apple Audio Graphs [2] uses a similar sonification
method, with the function to interact with the sonification using
touch in Apple products.

In recent times, several emerging accessible data representation
solutions have featured sonification. For example, Siu et al. [61]
proposed Audio Data Narratives. This method automatically parti-
tions a timeline into important segments and then interleaves the
description with sonification rather than presenting the description
separately. VoxLens [57] uses a mix of textual description of a visu-
alization (equivalent to alternate texts), sonification produced from
a dedicated tool named Sonifier, and voice commands for support-
ing accessible visualization on the web. Using Sonifier as a probe,
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System Design Dimensions

Audio Type

Sonic

Mapping

Play

Order

Auditory Information

Seeking Actions (AISA)

Application

Domain

Sonification
Sandbox [69]

Simple + complex
periodic

Pitch, Volume,
Timbre, Pan Serial Gist Desktop

iSonic [74] Simple + complex
periodic, TTS Pitch Serial Gist, navigation, situate, details

on demand, select, brush Desktop

Apple Audio
Graph [2]

Simple + complex
periodic, TTS Pitch Serial Gist, navigation, situate, details

on demand, select Mobile app

Highcharts [8] Simple + complex
periodic, TTS Pitch Serial Gist, navigation, situate, details

on demand, select
Proprietary,
online

VoxLens [57] Simple + complex
periodic, TTS Pitch Serial Gist, navigation, situate, details

on demand, select
Online plugin,
open-sourced

Audio data
narratives [61]

Simple + complex
periodic, TTS Pitch Serial Gist —

Rich Screen
Reader [75] TTS — — Navigation, situate, details on

demand, select Online

Table 1: Design space for accessible data visualization across five design dimensions. Here TTS refers to Text-to-Speech. We do

not include Sonifier [56] as a separate system, as it was originally proposed as a module in VoxLens.

Sharif et al. [56] further highlighted the need to improve the use-
fulness as well as usability of sonified responses. They conducted
a study to measure the usability of different periodic signals (e.g.,
a synthesizer with a square waveform) in sonification across four
Likert scales: Pleasantness, Clarity, Confidence, and Overall Score.

While these lines of work are inspiring, at their core, they follow a
similar sonification method: using the pitch of artificial and musical
sounds (i.e., simple or complex periodic waveforms, as described in
§2.1) to serially sonify data. Prior work has highlighted the need
to improve such sonification techniques [9, 27, 56, 70]. This paper
pushes the status quo of sonification, drawing on the rich literature
on audiology, data sonification, and psychoacoustics studies. Indeed,
for the first time, we show that natural sounds—typically considered
ambient noises and comprising complex aperiodic waveforms—
can represent common data visualizations. Further, our method
introduces several new concepts for sonification research, such as
using LUFS as sonic mapping and parallel sonification.

3.3 Sonification with Natural Sounds

To our knowledge, we are not aware of any prior work that uses
natural sounds for accessible data representation. However, we note
several uses of natural sounds in other applications. For example,
traffic data from computer networks are often beyond human pro-
cessing capabilities due to their large scale and speed. Debashi et
al. [13] used different bird sounds to raise situational awareness of
users monitoring such large-scale network traffic data. Similarly,
Lockton et al. [39] proposed Bird-Wattching, a hardware device
that uses bird sounds to alert users about electricity usage.

Another relevant direction is soundscapes [28, 35, 48]: the use of
sounds to create an acoustic environment, where natural sounds are
used as a matter of course. The concept is often applied in game de-
sign and virtual and augmented reality. We differ from soundscapes

in the sense that we do not use natural sounds to enhance the real-
ism of an environment or raise spatial awareness, but instead create
an environment to represent abstract data. Put differently, a raven
cawing would indicate the presence of the bird in the soundscape,
whereas we utilize the raven’s call as a vehicle to convey other
data. We, however, acknowledge that our work can be interpreted
as falling under the umbrella of “soundscape” research because of
our use of natural sounds as the representational medium.

♪ ♪ ♪

In summary, while natural sounds have previously been used
in sonification and soundscape research, the process of mapping
natural sounds to data visualization such as bar, line, or scatter plot,
is still unknown. In this paper, we aim to address this gap.

4 DESIGN SPACE FOR ACCESSIBLE DATA

REPRESENTATIONS WITH NATURAL

SOUNDS

Here we discuss current accessible data representation solutions
across five design dimensions. These design dimensions are the
key parameters for designing appropriate solutions, and we identi-
fied them using our literature review (§2 and §3). Together, these
dimensions define the design space for developing our natural
sound-based sonification technique.

Table 1 summarizes this design space. We include only systems
that feature an audio interface for accessing visualizations and
exclude tactile and smell-based systems. We further discuss the
design dimensions below in detail and outline design challenges
for natural sound-based sonification.

4.1 D1 – Audio Type

Most existing solutions use simple (i.e., a single sine wave) and
complex periodic sounds (i.e., musical notes) for sonification and
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synthesized speech (e.g., text-to-speech or TTS) for providing de-
tails of selected data points. However, we intend to use natural
sounds (complex aperiodic sounds) for sonification and synthesized
speech for details on demand. The simple and complex periodic
sounds common to current tools are created programmatically and
are easy to manipulate. However, there is no straightforward way
to create natural sounds programmatically. Thus, we need to collect
natural sounds that we can manipulate for sonification (design
challenge 1 or C1).

4.2 D2 – Sonic Mapping

Sonic mapping captures what sonic features are used to convey
data. Based on Table 1, there are four options for auditory mapping:
(1) pitch, (2) loudness, (3) timbre, and (4) pan. Existing solutions
typically use the pitch of a simple or complex periodic sound to
represent data values. This is consistent with long practice in soni-
fication confirmed as recently as by Wang et al. [70] in 2022, and
Chundury et al. [9] in 2021.

Using pitch to convey data makes sense for periodic sounds since
they either contain a single sine waveform (i.e., simple periodic
sounds) or a fundamental frequency (i.e., complex periodic sounds),
which can be changed easily. However, it does not apply to natural
sounds (i.e., complex aperiodic sounds) as they do not exhibit any
well-defined frequency. Moreover, changing the frequency distribu-
tion of natural sounds can change their signature and make them
unrecognizable. This poses a unique challenge (C2) for our work
as we need to investigate which sonic property is appropriate for
mapping data to natural sounds.

4.3 D3 – Play Order

The play order captures the sequencing of the sonification of data
points, serially or in parallel. All current systems play data points
serially, one after one. However, this is contrary to how data visual-
izations are perceived visually, where sighted users consume data
points together rather than in isolation [45]. One key motivation
behind using natural sounds is that they are typically perceived
by humans in parallel, all blended together. Remarkably, the hu-
man auditory system can simultaneously consume parallel sound
streams while selectively focusing on streams of interest [5, 11].
We thus hypothesize that natural sounds can be used for sonifying
multiple data points in parallel. However, there exists limited knowl-
edge of how parallel mechanisms can be facilitated in sonification.
We anticipate that parallel playback will yield new challenges (C3).

4.4 D4 – Supported Auditory Information

Seeking Actions

The fourth dimension is the Auditory Information Seeking Ac-

tions (AISA) proposed by Zhao et al. [74]. This set has eight actions:
gist, navigation, situate, select, details on demand, brush, filter, and
search. Zhao et al. showed that these actions are analogous to how
sighted users use data visualization and should be supported in
audio graphs. Gist provides an overview of data with small audio.
The other actions depend on user interaction. For example, a user
can select a data point and listen to a verbal description of the data
point from a text-to-speech converter.

ID Description

C1 Collecting a natural sound database
C2 Mapping data to an auditory channel of natural sounds
C3 Supporting parallel sonification with natural sounds
C4 Support AISA: gist, navigation, situate, select, and details

on demand
C5 Supporting visualization in a web browser and using a

screen reader
Table 2: Design challenges for accessible data representation

with natural sounds. The challenges are identified from the

five design dimensions discussed in Section 4.

Except for iSonic and Susurrus (proposed in this paper), most
systems in Table 1 were not explicitly designed to support AISA.
We reviewed interaction support in these systems and identified
which AISA are supported. A few patterns emerged from Table 1:
(1) all systems provide a gist or overview of the data by combining
sonification and Text-to-Speech (TTS) description, except for the
Rich Screen Reader [75], which focuses more on allowing users
to drill down a visualization using a screen reader; (2) navigation,
situate, select, and details on demand are commonly supported
using keyboard interaction; and (3) brush, filter, and search are not
commonly supported. Based on this prior art, our approach should
support commonly used actions: gist, navigation, situate, select, and
details on demand (C4).

4.5 D5 – Application Domain

Themost recent work in this space, such as VoxLens [57], focuses on
web-based data visualization in aweb browser. This is not surprising
since most data visualization today appears on the web. Thus, our
future prototype should be compatible with most browsers, data
visualizations, and screen readers (C5).

5 INITIAL PROTOTYPE: SUSURRUS

Susurrus is our sonification tool based on natural sounds. To address
the identified design challenges, C1-C5 (summarized in Table 2),
we adopted an iterative approach—we first designed a prototype,
conducted a pilot study (§6), and refined the prototype (§7) based
on the study findings. This section describes our initial prototype.

5.1 Natural Sounds Database

We collected a wide variety of royalty-freely natural sounds from
the web. Our database includes sounds of rain pattering, distant
thunder, dry leaves rustling, the wind howling, waves crashing, soft
wind whispering, wood burning, chimes chiming, as well as many
animal sounds from crickets, frogs, owls, woodpeckers, robins,
nightingale, cuckoo, grasshopper, and seagull (addressing C1). Our
goal was to include a wide array of sounds to test how they com-
plement each other when played together. We selected sounds with
a single tap of the source (e.g., a bird chirping only once) without
any other background sounds. This is so we can repeat the sounds
with variable intervals. Sounds in our database were between 1 and
2 seconds in duration.
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Amplitude

Frequency

Figure 3: Frequency distribution for three soundtracks (woodpecker, seagull, and raven) in our database. Notice that unlike

single frequency wave form, our soundtracks are comprised many frequencies.

Data (𝑑𝑖 ) Normalized

Data (𝑑𝑖 )

Sound (𝑠𝑖 ) Target Loud-

ness (𝑙𝑖 )

8 0 Seagull -23.00
25 0.46 Woodpecker -17.49
45 1 Raven -11.00
23.5 0.42 Robin -17.97

Table 3: Sonic mapping using loudness. We show how this

approach is applied to four example natural sounds.

5.2 Sonic Mapping

To compare different audio channels, we selected perceived loud-
ness, sound or tapping interval, and sound duration for mapping
data values in Susurrus (C2). According to the discussion in Sec-
tion 4.2, the pitch is not well-defined for natural sounds. Indeed, we
plotted the frequency distribution for a few sounds (Figure 3) and
found that each has a unique distribution. We noticed that there
is typically a frequency with high amplitude. We experimented
by changing the frequency with high amplitude. However, this
tended to distort the quality of the natural sound. Similarly, we
did not change the timbre (§2.5) as we did not want to change the
distinctiveness of a sound.

Thus, we selected perceived loudness, sound interval, and sound
duration for sonic mapping. We use the following notations to
demonstrate our mapping functions. Suppose 𝐷 (𝑑1, . . . , 𝑑𝑛) is our
dataset containing 𝑛 data points; 𝑆 (𝑠1, . . . , 𝑠𝑛) is a list of sounds
available in our sound database, where a data point 𝑑𝑖 is assigned a
natural sound 𝑠𝑖 .

5.2.1 Perceived Loudness Mapping. This mapping conveys the rel-
ative differences between data points through their differences in
loudness. For a dataset 𝐷 (𝑑1, . . . , 𝑑𝑛) containing 𝑛 data points, this
mapping produces a list of loudness levels 𝐿(𝑙𝑠1, . . . , 𝑙

𝑠
𝑛) of 𝑛 natural

sounds, where the perceived loudness of a natural sound 𝑠𝑖 , as-
signed to sonify an individual data point 𝑑𝑖 , is adjusted to the target
loudness level 𝑙𝑠

𝑖
. More specifically, 𝑙𝑠

𝑖
is a mapping function, defined

as 𝑙𝑠
𝑖
= 𝑆𝑢𝑠𝑢𝑟𝑟𝑢𝑠𝐿 (𝑑𝑖 , 𝑠𝑖 ). The decomposition of 𝑆𝑢𝑠𝑢𝑟𝑟𝑢𝑠𝐿 (𝑑𝑖 , 𝑠𝑖 )

function is given below:

𝑑𝑖 =
𝑑𝑖 − 𝐷𝑚𝑖𝑛

𝐷𝑚𝑎𝑥 − 𝐷𝑚𝑖𝑛

𝑙𝑖 = 𝐿𝑚𝑖𝑛 + 𝑑𝑖 ∗ (𝐿𝑚𝑎𝑥 − 𝐿𝑚𝑖𝑛)

𝑙𝑠𝑖 = 𝐿𝑈 𝐹𝑆𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 (𝑠𝑖 , 𝑙𝑖 ) (1)

Here, 𝐷𝑚𝑎𝑥 and 𝐷𝑚𝑖𝑛 are the maximum and minimum values in
the dataset 𝐷 ; 𝐿𝑚𝑎𝑥 and 𝐿𝑚𝑖𝑛 are the maximum and minimum
loudness possible in our system; 𝑑𝑖 is the min-max normaliza-
tion of 𝑑𝑖 ; 𝑙𝑖 is target loudness for normalized data point 𝑑𝑖 ; and
𝐿𝑈 𝐹𝑆𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 (.) is an audio operation that mimics the equal
loudness curves (Figure 2b) for digital sound 𝑠𝑖 to achieve the target
loudness of 𝑙𝑖 . We set 𝐿𝑚𝑖𝑛 = −23 LUFS (quietest) for the minimum
value in the dataset (𝐷𝑚𝑖𝑛) and 𝐿𝑚𝑎𝑥 = −11 LUFS (loudest) for the
maximum value in the dataset (𝐷𝑚𝑎𝑥 ).

Recall that the perceived loudness is a function of the full scale
(FS), frequency distribution, distance, and duration of a digital sound
(§2.4). The usefulness of LUFS is that it can achieve the desired loud-
ness level regardless of the underlying frequency distribution of
the sound [51]. For example, the frequency distributions of wood-
pecker, seagull, and raven sounds (Figure 3) are different. Therefore,
to achieve the same (target) perceived loudness for these sounds,
they need to be normalized differently, mimicking the equal loud-
ness curves (Figure 2b) for individual, constituent frequencies. We
used an open-source implementation of LUFS [64] for this purpose.

Additionally, we kept the duration of different sounds in our
database similar in order to minimize the effect of sound length on
perceived loudness. Furthermore, we require listeners to wear head-
phones to control the distance between the sound source and the
ears. Table 3 shows an example of converting a bar chart containing
four values to the desired loudness levels.

5.2.2 Sound Interval. We repeated the sounds multiple times while
controlling the interval between the sounds to map the data val-
ues (Figure 4a). Suppose 𝑇 (𝑡𝑠1, . . . , 𝑡

𝑠
𝑛) is the list of the sound in-

terval for 𝑛 data points. We need to define a mapping function,
𝑡𝑠
𝑖
= 𝑆𝑢𝑠𝑢𝑟𝑟𝑢𝑠𝑇 (𝑑𝑖 , 𝑠𝑖 ) that maps a data point 𝑑𝑖 to a sound 𝑠𝑖 hav-

ing the target interval 𝑡𝑠
𝑖
in order to convey the data values. The

decomposition of 𝑆𝑢𝑠𝑢𝑟𝑟𝑢𝑠𝑇 (𝑑𝑖 , 𝑠𝑖 ) function is given below:
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Figure 4: Sonic mapping using sound interval and duration. (a) Variable intervals between the sounds with constant total

duration. Notice that the interval between two sounds for the raven bird (1st bar) is the shortest, representing the highest

value. (b) Variable duration of the sounds with a constant interval between repetitions. Notice that all four birds have the same

interval. However, the total duration of the raven sound (1st bar) is the longest, representing the highest value.

𝑑𝑖 =
𝑑𝑖 − 𝐷𝑚𝑖𝑛

𝐷𝑚𝑎𝑥 − 𝐷𝑚𝑖𝑛

𝑡𝑠𝑖 = 𝑇𝑚𝑎𝑥 − (𝑇𝑚𝑖𝑛 + 𝑑𝑖 ∗ (𝑇𝑚𝑎𝑥 −𝑇𝑚𝑖𝑛)) (2)

The interval between the sounds are set to be inversely propor-
tional to the data values. That is, a high value will mapped to a
birds having a small interval. For example, in Figure 4a, the first
bar has the highest value and the sound representing it (raven) has
the lowest interval. We set 𝑇𝑚𝑖𝑛 = 0.01𝑠 and 𝑇𝑚𝑎𝑥 = 5𝑠 . The total
duration of the sounds were 20 seconds.

5.2.3 Sound Duration. Wemapped each data value to a sound with
variable duration (Figure 4b). The minimum and maximum sound
duration was set to 𝑆𝐷𝑚𝑖𝑛 = 0.5 and 𝑆𝐷𝑚𝑎𝑥 = 20 seconds. Similar
to Equation 2, the mapping function 𝑆𝑢𝑠𝑢𝑟𝑟𝑢𝑠𝑆𝐷 (𝑑𝑖 , 𝑠𝑖 ) maps the
duration of a sound 𝑠𝑖 , assigned to represent the data point 𝑑𝑖 , to the
target sound duration 𝑠𝑑𝑠

𝑖
. We repeated the sounds multiple times

to achieve the target duration. For example, in Figure 4b, the target
duration for the raven bird is 20 seconds (𝑆𝐷𝑚𝑎𝑥 ), representing the
first bar with the highest value. The intervals between the repetition
for all sounds were constant (0.1 seconds).

5.3 Supporting Gist with Parallel Sonification

Gist provides an overview of all data points. It is the most common
application of sonification and a core action in AISA. We wanted
to use parallel sonification for providing gist (C3, C4). We imple-
mented gist (by default a 20 seconds long sonification) for three
types of data visualization in this initial version: (1) bar chart, (2)
line chart, and (3) multi-line chart. We determined the default du-
ration (20 seconds) by experimenting with several time durations.
We also provide keyboard shortcuts to customize the duration of

sonification (Table 4). The 20 seconds gist is played in a loop until
the user stops or pauses the sonification.

5.3.1 Bar chart. In a bar chart, a user should be able to identify the
number of bars and their relative values for comparison. To support
that, wemapped each bar to a unique natural sound and then played
them together (in parallel). The selected audio channel (perceived
loudness, sound interval, or duration) was set in proportion to the
bar’s height.

5.3.2 Line chart. In a line chart, the height of the line represents its
value at a point. Since it represents continuous data, we needed an
auditory channel that we can change continuously. Sound interval
and duration are unsuitable for that. Thus, we used varying loudness
to represent the change in a line chart.

5.3.3 Multi Line chart. Like a bar chart, we assigned a unique
natural sound to each line in a multi-line chart. We changed the
loudness of each natural sound, similar to a single-line chart.

5.4 Supporting Navigation, Situate, Select, and

Details on Demand with Interaction

Interaction helps users navigate, situate, select, and obtain details
on demand from an audio graph (C4). A user can press the Space

button to play the gist (Table 4). A user can also change (increase
or decrease) the length of the sonification by pressing ↑ and ↓

arrow keyboard shortcuts.
We used ← and → arrow keys to allow users to move (navigate)

from one data point to another. During navigation, users may get
lost in the virtual auditory space. To situate themselves, similar to
iSonic [74], users can press I to get verbal feedback from the
system about their current status during navigation.
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Shortcut

AISA

Support

Details

Space Gist Play or stop the sonification
↑ Gist Increase playback speed of the audio
↓ Gist Decrease playback speed of the audio
← Navigate Move to the the previous data point
→ Navigate Move to the the next data point
I Situate Play the current status

1 to 9 Select Select a datapoint(s) of interest

I
Details on
demand

Description of the selected data-
point(s) using speech-to-text

Esc Control Reset data selection

Table 4: Keyboard shortcuts in Susurrus. A user needs to press

a control button (default Ctrl) with the keystrokes.

A user can press 1 to 9 to select data points. For example,
the user can press 2 to listen to the sonification of that data point.
In this selection mode, pressing the I key will play the details of
the selected data point using text-to-speech software. A subsequent
press on 2 will deactivate the data point in the sonification. This
way, a user can listen to any combination of the data points, similar
to how a user would interact with a visualization. Pressing the Esc

button will reset any selection.

5.5 Web Application Design

We implemented Susurrus as a web application to address C5. We
used Python in the backend for sound processing and web services
with JavaScript in the front end for supporting user interaction. For
performing the sonic mapping (e.g., LUFS) between data and sounds,
we used pyloudnorm2. We used Howler.js3 for implementing au-
dio playback features, such as play, pause, stop, and fast forward.We
used Web speech API to describe the data points verbally. Finally,
the accompanying visualizations were produced using D3.

6 PILOT STUDY

We conducted a pilot study with 5 BLV participants to assess the
feasibility of Susurrus and identify possible design issues.

6.1 Participants

We recruited 5 participants (2 males, 3 females) from university
mailing lists andword of mouth. All participants were legally blind—
three had some light perception, and two were fully blind. All of our
participants had familiarity with basic data statistics (e.g.,𝑚𝑖𝑛,𝑚𝑎𝑥 ,
𝑚𝑒𝑎𝑛). Two participants reported having prior musical training,
either as a self-taught musician or through formal training. One par-
ticipant had experience with sonification. Participants’ ages ranged
from 19 to 35. Participation was voluntary, with no compensation.

2https://github.com/csteinmetz1/pyloudnorm
3https://howlerjs.com

6.2 Study Materials and Procedure

We created ten sonifications in total for the study: two each for
bar, line, and multi-line charts using loudness, two for bar charts
using sound duration, and two for bar charts using sound interval
as sonic mapping. We deployed Susurrus along with the pre-loaded
sonification on a public web server. Participants used their web
browsers to listen to and interact with the sonification.

All study sessions were conducted remotely using teleconfer-
encing software (e.g., Zoom). Each participant attended the session
separately. We recorded and transcribed each session. Participants
wore headphones during the study.

After giving consent, participants listened to the sonification,
one at a time. We provided verbal instructions to the participants
to interpret the sounds. We also guided participants to interact
with the charts using keyboard shortcuts. To facilitate discussion
and ideation, we asked participants to identify minimum and max-
imum and compare two data points from the sonification of the
bar charts. We also asked participants to describe the trends from
the sonification of line and multi-line charts. We followed a think-
aloud protocol. Throughout the sessions, participants shared their
feedback about the sonification with the research team.

6.3 Data Analysis

Two authors independently open-coded the anonymized transcripts
of the participants’ feedback and then conducted a thematic analysis.
The authors met regularly to discuss and refine the codes and
themes. During this process, we also discussed the codes and themes
with the entire research team.

6.4 Findings and Recommendations

Participants were enthusiastic about the tool and found the soni-
fication easy to understand. We noticed that participants quickly
identified the natural sounds from the sonification and suggested
that the sounds were easy to distinguish, even when played to-
gether. Participants further provided several recommendations to
improve Susurrus.

6.4.1 Recommendation for Sonic Mapping. All participants found
loudness to be the easiest for comparing data points. Participants
easily identified the maximum and minimum values from the gist.
For values with small differences, participants used select and details
on demand.

P1, P2, and P4 reported that sound interval was confusing as a
sonic mapping. This is because the sounds differed slightly in terms
of duration. Even though we selected sounds with approximately
the same duration, they are not exactly the same due to their ambi-
ent nature. This is an unavoidable problem with natural sounds as
each sound is different from others. For example, a single chirp of a
seagull is slightly shorter than a single chirp of a robin. While this
did not affect the perception of loudness, it was problematic when
we controlled the interval between the repetition of the sounds. Ad-
ditionally, P1 and P5 mentioned that the repetition was annoying in
some cases, especially when they were played with small intervals.

Participants found sound duration to be an easy mapping. How-
ever, we noticed that participants were slow to infer the order of
the data since they had to wait till the end of the sounds.

https://github.com/csteinmetz1/pyloudnorm
https://howlerjs.com
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Figure 5: Revising sounds and supported charts in Susurrus. (a) We excluded sounds that have a wide range frequency spectrum

(e.g., rain sound, on the left) for sonification and include sounds that have distinct frequency spectrum (e.g., a bird sound, on

the right). The 𝑥 axis represents time (seconds), while the 𝑦 axis represents frequency (Hz). The color scale represents amplitude

in decibels (dBFS). (b) We extended supported charts to scatter plots. Each class is represented with a distinct natural sound. An

auditory sweep (the gray line) moves from left to right and plays the corresponding sounds whenever it intersects with a point

or a group of points.

6.4.2 Recommendation for Selecting Sound Sources. Participants
suggested selecting sounds with similar semantic meaning (P1,
P3, P5) so that they are easy to compare. Participants also suggested
removing sounds that had no distinct pattern and consumed other
sounds (e.g., rain). For example, participants found rain and bird
sound difficult to compare. In contrast, multiple birds were easy to
compare. P1 said:

“Bird and rain sounds were difficult to compare. It did
not feel natural to compare two sounds that are so dif-
ferent in terms of what they represent physically. The
birds were easy to compare.” (P1)

6.4.3 Recommendation for Number of Data Points. We used par-
allel sonification for bar and multi-line charts. While participants
understood the presence of different sounds easily, they suggested
limiting the number of parallel sounds to five so that the sonifi-
cation remains manageable (P1, P2). This feedback was expected
since we anticipated that we will need to account for the limited
bandwidth of our auditory system.

7 SUSURRUS: FINAL IMPLEMENTATION

Based on the findings from the pilot study, we refined several com-
ponents in Susurrus.

7.1 Loudness as Sonic Mapping

We decided to use perceived loudness as the sonic mapping for
Susurrus because (1) our method can account for variable frequency
spectrum of the sounds for mapping loudness; (2) participants in our
pilot study found loudness to be an easy mapping; (2) sound interval
was confusing to participants; and (3) sound duration only applies
to bar charts and requires significantly more time for inference.

7.2 Ambient Theme

We separated sounds with a wide frequency range (white noises)
from our sound database. White noise is a sound that consumes
all frequencies with similar intensity [34]. For example, Figure 5a
(on the left) presents a spectrogram for a rain sound, a white noise

used in our pilot study. Its frequency distribution is expanded to
the full spectrum with high intensities. Such white noises created
confusion among participants in the pilot study as the white noise
consumed frequencies of other sounds, making the other sounds
hard to distinguish. In contrast, a bird only takes a fixed portion of
the frequency spectrum (Figure 5a right). Therefore, white noises
should not be used for mapping data. However, we noticed that
white noises, with small intensity, are useful for creating ambiances,
such as a rainy day or a forest.

According to the pilot study, the sound sources need to be com-
parable. To facilitate this, we created a collection of different bird
sounds that are freely available on the web. Susurrus uses white
noises as background sounds, while bird sounds are used for repre-
senting data. Thus, they create an ambient theme (e.g., bird sounds
in the forest). It is worth noting that although we created one theme
for demonstration, different types of sounds may create different
themes (e.g., a coffee house, walking in a city, or sounds from the
seaside), and they will be supported the same way.

Finally, to make the sonification consistent with the ambient
theme, we decided to use variable intervals between the repeti-
tion of the sounds. This is because constant repetition can sound
mechanical and reduce the pleasantness of the sounds. We play
the sounds in repetition till a user pauses or stops the sounds by
pressing the Space key.

7.3 Extending Chart Types

We extended the supported chart types to scatter plots. To sonify a
scatter plot, we first assign each class of points to a unique natural
sound. For example, in Figure 5b, the three sets of points are rep-
resented by Raven, Dove, and Woodpecker. We then convert the
𝑥-axis value of the points to a [−1, 1] range so that we can represent
the location of the points using stereo panning. We also convert
the 𝑦-axis value of the points to the range of loudness levels.

The sonification starts with a mild white noise (i.e., auditory
sweep) playing from the left to the right ear of a user using stereo
panning. The continuous auditory sweep helps users situate them-
selves in the virtual auditory space. In the case of an intersection
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ID Gender Age Vision Level Education Musical Experience

P1 Female 36 Blind Doctorate Music teacher
P2 Female 25 Blind Bachelors Pitch-based sonification
P3 Female 21 Blind Associates Pitch-based sonification
P4 Male 38 Low Vision Bachelors Pitch-based sonification
P5 Male 20 Blind Bachelors Sound engineer for media
P6 Female 43 Blind Masters Professional singer
P7 Female 20 Blind High school None
P8 Male 34 Blind Doctorate None
P9 Female 32 Blind Masters None
P10 Female 48 Low Vision Associates None
P11 Male 49 Blind College None
P12 Male 30 Blind High school None

Table 5: Participants demographics. Most participants were blind; two were low-vision. All were full-time screen reader users.

between the data points and sweep, we play the points with their
corresponding natural sounds, stereo locations, and loudness levels.
For example, Figure 5b shows a case where two points belonging to
Raven and Dove intersect with the auditory sweep. Both Raven and
Dove will be played together, where stereo panning and loudness
will represent their coordinates. We repeat the natural sounds to
indicate the number of points. However, the repetition can overlap
and create annoyance if the points are very nearby. Thus, we only
repeat a sound if it is not already playing. This way, our method
can represent the relative number of points (i.e., density) for each
class and where they are in the 2D Cartesian space.

7.4 Implementation Notes

Susurrus is currently a research prototype. However, our tool is
open-sourced (https://github.com/tonmoycsedu/Susurrus), allow-
ing others to build upon it or modify it to their needs. For example,
with appropriate modification to our codebase, Susurrus can be
deployed as a plug-in for browsers or screen readers. It only uses
JavaScript libraries and runs in popular browsers (e.g., Chrome).
Moreover, it is compatible with screen readers and supports key-
board shortcuts. Since many visualization tools (e.g., D3, Tableau)
preserve raw data, if Susurrus plug-in can access the raw data, it
can sonify them in response to users’ keyboard commands, with-
out needing a separate graphical interface. Prior work has shown
that plug-ins are very effective in combating accessibility issues
for blind users [42]. Similarly, Susurrus can provide API services
(e.g., RESTful APIs), which other researchers and practitioners can
integrate into their web interfaces. Finally, Susurrus can be inte-
grated into existing efforts for accessible data visualization (e.g.,
Sonifier [56]), to enable multiple sonic profiles (e.g., natural sound,
musical notes, artificial sounds such as sinusoidal and square waves)
and conversational ability [9, 57].

8 EVALUATION

We conducted a user study with 12 BLV participants to understand
the novel aspects of the final Susurrus prototype in the context
of current sonification techniques. The study was reviewed and
approved by our university’s IRB office and the Research Advisory

Council of the U.S. National Foundation of the Blind (NFB) in Bal-
timore, MD, USA. We intended to answer the following research
questions with this study:

RQ1: How effective is Susurrus in representing bar charts, com-
pared to existing sonification tools?

RQ2: How effective is Susurrus in representing line charts, com-
pared to existing sonification tools?

RQ3: How doesmusical background of the participants affect their
performancewith Susurrus, compared to existing sonification
tools?

RQ4: What are the benefits of using sonification proposed in
Susurrus in terms of user experience?

RQ1 and RQ2 are motivated by the supported charts in Susurrus.
RQ3 is based on prior works that showed that users with musical
backgrounds could discern changes in pitch 60% better than un-
trained users. We anticipated this phenomenon could impact our
study results and hence needs to be studied. Finally, RQ4 seeks to
find hedonic values of natural sounds for sonification.

8.1 Participants

We recruited 12 BLV participants through the National Founda-
tion of the Blind (NFB). Our inclusion criteria included participants
owning stereo headphones, having no hearing impairments, and fa-
miliarity with web browsing using assistive technology (e.g., screen
readers) of choice. Although prior experience with music or sound
was not required, most respondents from the initial recruitment
pool had music careers (e.g., professional singers or music teachers).
We believe our recruitment flyer may have attracted participants
with musical backgrounds. Some participants had also used musi-
cal note-based sonification techniques before, but none had used
them regularly. Our final selection included 7 women and 5 men,
with an average age of 33 (SD: 10.3). Half (6) of them had musi-
cal backgrounds or familiarity with pitch-based data sonification
techniques. Table 5 presents participants’ demographics.

8.2 Study Condition

We conducted a repeated-measures within-subject experiment with
the following two conditions:

https://github.com/tonmoycsedu/Susurrus
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Task Category Chart Purpose (RQ) ExampleQuestion

T1 Point Estimation Bar RQ1, RQ3, RQ4 Which student has the highest (or lowest) score?
T2 Point Comparison Bar RQ1, RQ3, RQ4 Which one has a higher value between the scores

sonified by the raven and woodpecker?

T3 Trend Identification Line RQ2, RQ3, RQ4 What is the overall trend for the stock price?
T4 Trend Forecasting Line RQ2, RQ3, RQ4 Based on the audio, what will be your forecast for

the stock price in the near future?
T5 Trend Comparison Line RQ2, RQ3, RQ4 Which of the following is true about the prices of

the two stocks in recent years?

T6 Point Estimation Scatter RQ4 Which side of your ear the crickets are buzzing?
T7 Point Comparison Scatter RQ4 Which pair of points have the shorter average dis-

tance between them?
Table 6: Task list for the user study. The tasks are designed for specific research questions.

C1 Highcharts: Sonifications created using Highcharts [8].
C2 Susurrus: Sonifications created using our tool.

The Highcharts condition featured bar and line charts. We used
the default setting from Highcharts: a triangleMajor (Major 7th
chord) instrument with a frequency range from 520 Hz (C5 note)
to 1,050 Hz (C6 note). Highcharts played the bar and line charts
serially, where the data values were represented with the pitch in
the frequency range. We include a video in the supplement with
the sonification from Highcharts.

8.3 Study Tasks and Questions

We designed the study questions based on the RQs (Table 6). To
answer RQ1, we presented the scenario of inferring test scores for
𝑛 students from a bar chart. We designed two tasks (T1 and T2). T1
and T2 are motivated by two common sonification tasks [25]: (1)
Point Estimation for estimating the magnitude of a data point;
and (2) Point Comparison for estimating multiple data points
and comparing their magnitudes. Similar tasks have also appeared
in previous sonification research [74]. Based on the two tasks, we
generated six questions for each condition.

To answer RQ2, we designed three tasks (T3, T4, and T5) based
on trend identification and comparison from a sonification of one
or two stock prices. These tasks were also designed from common
sonification tasks [25] and prior studies [74]. Using these three
tasks, we generated six questions for each condition.

Lastly, we designed T6 and T7 for scatterplots, only to perform
with Susurrus (C2). This is becauseHighcharts (C1) does not support
finding the location of a data point in a scatterplot, as well as the
sonification of multiple classes of points in scatterplots. Along with
T1-T5, these two tasks are designed only to answer RQ4.

We provided multiple choices for each question. The supple-
mental materials include a detailed list of questions and multiple
choices. The underlying task datasets in each condition had similar
statistical properties and complexity.

8.4 Study Procedure

Similar to our pilot study, we deployed Susurrus on a public server
and conducted each session using video-conferencing software (e.g.,

a

c

d

Sc
or
e

Student

b

Figure 6: Web interface for the user study. (a) A prompt

for the current task; (b) The corresponding visualization

(not shown on the study web page); (c) Control buttons to

play/pause sounds, select data points, and move between

study tasks, mirroring the keyboard shortcuts in Table 4; (d)

Questions relevant to the current task. The interface was

fully accessible to screen reader users.

Zoom). Our web interface (shown in Figure 6) was fully accessible
to screen readers.

Each session started with participants signing the consent form
and providing demographic information. We then shared the URL
for the study. To minimize learning effects, we counterbalanced the
order of study conditions and tasks. Note that the sonification for
scatterplots always appeared last in Susurrus.

We provided verbal and written instructions to interpret the
sounds and interact with the sounds with keyboard shortcuts. Both
conditions supported interactions listed in Table 4; however, we dis-
abled the details on demand (i.e., text-to-speech) mode of both tools
to measure the sonification technique’s effectiveness. Additionally,
we provided training tasks and encouraged participants to ask ques-
tions. Once participants were comfortable with the condition and
different sonification, we presented the study tasks.

Each session lasted for 1.5 hours and endedwith an exit interview.
We include the semi-structured questionnaire for the exit interviews
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as a supplement. To gauge the usability, we administered a post-
completion System Usability Scale (SUS) questionnaire [6], which
consists of 10 Likert scale statements, where the participant rated
each statement on a scale of 1—strongly disagree—to 5—strongly
agree. We also verbally administered NASA-TLX [24] to measure
an individual’s perceived workload.

The experimenter took notes during the session. All sessions
were audio and video-recorded and transcribed for post-analysis.
Each participant received a $25 Amazon gift card to compensate
for their time.

8.5 Data Collection and Analysis

Similar to VoxLens [57], we used the Accuracy of Extracted Infor-
mation (AEI) to measure performance. AEI is a binary variable for
a single question (i.e., “inaccurate” or 0 if the user was unable to
answer the question correctly, and “accurate” or 1 otherwise). The
overall accuracy was calculated by taking the ratio of the num-
ber of correct answers to the total number of questions and then
converting it to a percentage.

Following guidelines for statistical analysis in HCI [15], we inten-
tionally avoided traditional null-hypothesis-based statistical testing
in favor of estimation methods to derive 95% confidence intervals
(CIs) for all measures. We employed non-parametric bootstrap-
ping [17] with 𝑅 = 1, 000 iterations. We also report the mean dif-
ference as a sample effect size and Cohen’s 𝑑 as a standardized
measure of effect size [10].

Similar to our pilot study, two authors of this paper indepen-
dently open-coded the anonymized post-study interview transcripts
and then conducted a thematic analysis. The coders met regularly to
discuss and refine the codes and themes. The coders also discussed
the codes and themes with the entire research team. All study data,
along with the study instructions and questions, are available in
our OSF repository (https://osf.io/j7szm/).

8.6 Study Design Rationale

Our primary goal with this study was to understand the benefits
and limitations of using the new sonification technique proposed
in Susurrus. To achieve that, we decided participants should have
experience with Susurrus and an existing solution that uses artificial
or musical notes. We decided Highcharts is a suitable baseline
because (1) it is a widely used visualization library that includes a
state-of-the-art sonification API; (2) it is built upon over 20 years
of empirical research (starting from Sonification Sandbox [69]);
and (3) it is open sourced and, similarly to Susurrus, it can easily
be integrated with a web browser. This was a requirement since
we wanted to conduct the study online because of the COVID-19
pandemic. However, as a first-ever sonification tool based on natural
sounds, our goal was not to beat a tested tool such as Highcharts
quantitatively but to position our work in the sonification design
space with evidence.

A challenge in our study is that it contains multiple confounding
factors such as audio type (natural vs. musical), sonic mapping
(loudness vs. pitch), and play order (serial vs. parallel). Due to
the fundamental difference in the waveform of natural (complex
aperiodic) and musical sound (complex periodic), it is not possible
to study these factors in isolation. Thus, we decided to compare the
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Figure 7: Accuracy of Extracted Information (AEI). Perfor-

mance for bar and line charts with 95% confidence intervals

(CI); the higher, the better. (a) AEI for tasks T1 and T2. (b)

AEI for task T3, T4, and T5.

systems (Susurrus vs. Highcharts), not the individual features of
the systems. The RQs reflect this decision.

8.7 Results

Here we report on our findings from the user study. We organize
the findings around the research questions.

8.7.1 RQ1 – Bar Charts. For tasks T1 and T2 (Figure 7a), partic-
ipants were 84.7% (CI = [79.2, 90.3]) accurate with Susurrus. In
contrast, participants were 75.2% (CI = [68.05, 81.9]) accurate with
Highcharts. On average, participants were 9.7% (CI = [8.6, 13.7])
more accurate with Susurrus for bar charts. The effect size (Cohen’s
𝑑 = 0.45) indicates a medium effect of the study condition.

8.7.2 RQ2 – Line Charts. For task T3, T4, and T5 (Figure 7b), par-
ticipants were 83.5% (CI = [75.0, 91.7]) accurate with Susurrus. In
contrast, participants were 78.4% (CI = [65.2, 90.3]) accurate with
Highcharts. On average, participants were 4.3% (CI = [2.3, 8.1]) more
accurate with Susurrus for line charts. The standardized effect size
(Cohen’s 𝑑 = 0.20) indicates a small effect of the study condition.

8.7.3 RQ3 – Effect of Musical Background. To answer RQ3, we
divided participants into two groups: Non-experts: participants
who had no prior experience in music and pitch-based sonification
(P7-12); and Experts: participants who had those experiences (P1-
6). We then compared their performance for bar and line charts.

On average, for tasks T1 and T2 (Figure 8a-top), Non-experts
were 86.6% (CI = [76.7, 96.7]) accuratewhile answering the questions
using Susurrus. In contrast, Non-experts were only 66.8% (CI =
[58.3, 75.0]) accurate while using Highcharts. The difference, 19.5%
(CI = [12.8, 26.5]), with an effect size of 0.86 (Cohen’s 𝑑), indicates
a large effect of the study condition.

We noticed that Experts achieved similar accuracy for both
sonification tools while performing T1 and T2. On average, for
tasks T1 and T2 (Figure 8a-bottom), expertswere 83.3% (CI = [75.0,

https://osf.io/j7szm/
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Figure 8: Accuracy of Extracted Information (AEI) for expert vs. non-experts. Experts are musically trained, and non-experts

are not. The higher, the better. (a) AEI for tasks T1 and T2. (b) AEI for task T3, T4, and T5.

91.7]) accurate while using Susurrus. Experts achieved almost
exactly the same accuracy, 83.0% (CI = [75.0, 91.7]), while using
Highcharts. The difference, 0.27% (CI = [0.0, 0.33]), with an effect
size of 0.01 (Cohen’s 𝑑), indicates no practical difference.

We observed a similar trend for line charts. Non-experts per-
formed better while using Susurrus for T3, T4, and T5. On aver-
age, for tasks T3, T4, and T5 (Figure 8b-top), Non-experts were
83.4% (CI = [73.3, 93.3]) accurate while using Susurrus. In contrast,
Non-experts were only 62.2% (CI = [44.4, 77.7]) accurate while
using Highcharts. The large difference in accuracy—20.5% (CI =
[13.4, 28.4])—with an effect size of 0.78 (Cohen’s 𝑑) indicates a large
effect of the study condition.

Finally, we noticed Experts performed better for task T3, T4, and
T5while usingHighcharts (Figure 8b-bottom). On average, Experts
were 80.4% (CI = [63.9, 94.4]) accurate while using Susurrus. How-
ever, Experts were 94.4% (CI = [88.9, 100]) accurate while using
Highcharts. The difference in accuracy, 13.9% (CI = [9.3, 19.5]), with
an effect size of 0.41 (Cohen’s 𝑑), indicates a medium effect of the
study condition.

8.7.4 RQ4 – User Experience. We discuss the relevant themes that
emerged from the post-study interviews below.

Parallel vs. Serial Sonification. In the post-study interview, sev-
eral participants mentioned that natural sounds were easy to distin-
guish and helped them to separate multiple categories of a bar chart
(P1-12). Further, they found it easy to compare data values since
they did not have to memorize the sounds. Using our parallel sonifi-
cation technique, they could listen to the sounds in reference to each
other. In contrast, when using Highcharts, participants listened to
the serial sonification multiple times to answer the questions for
bar charts. P1 and P4 said,

“It was easy to compare because I knew the [natural]
sounds and could identify them easily.” (P1)
“Natural sounds helped me separate the students [bars].
I was able to differentiate the data I was trying to iden-
tify. With beep sounds [Highcharts], it did not feel like
I am comparing 4 or 5 students.” (P4)

This overall positive feedback was reflected in the quantitative
results for bar charts, as separating and estimating multiple data
points were easier using Susurrus.

Loudness vs. Pitch. In the post-study interviews, participants sug-
gested that natural sounds and loudness can provide an alternative
to people unfamiliar with musical notes and pitches. Several par-
ticipants mentioned that pitch is difficult for them to decode (P7-9,
P12). P7 said,

“Pitch is confusing to me. I can understand high and
low frequencies, but the middle ones [mid-range fre-
quencies] really confuse me.” (P7)

P1, who is a music teacher, said,
“I have worked with plenty of students at university who
cannot recognize differences in pitch. For them, natural
sounds will be a better choice.” (P1)

Half of our participants were well-attuned to pitch and musical
notes from prior experience. They mentioned that natural sound-
based sonification was also easy for them. On the flip side, partici-
pants suggested that it is possible that loudness can be confusing,
too, especially for people with hearing loss (P1, P4).

Localizing Data Points in Scatterplots. Participants understood
the different classes of data points easily when listening to scatter-
plots (P1-12). P6’s comment below summarizes how participants
interpreted the sonification:

“It is really amazing! If I hear only one Dove in my
right ear, I know there is only one type of point on
the right side. If I hear several Doves and a single
Woodpecker on my left ear together, I know there are
several Dove points on the left side with oneWoodpecker
point overlapping with them. If I hear the Woodpecker
sound a little bit later and in the middle of my ears, I
know it is a bit far away from the Dove points.” (P6)

Thus, our sonification method not only enabled participants to
localize points but also helped them measure the relative distance
between the points. P12 said that they have been trying to interpret
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“XY axis-based data” all their life, and our sonification is the most
intuitive they have found so far.

Overview and Zoom with Susurrus. Susurrus provided an au-
ditory equivalent of the visualization mantra by Ben Shneider-
man [58]: Overview first, zoom and filter, details on demand. While
participants did not use the details on demand feature as it was
disabled for study purposes, we noticed participants used gist for
obtaining an overview of data and then selected specific data points
using our keyboard shortcuts for comparison. This helped them
understand data using a top-down approach (P1-4, P8-9) and con-
centrate on data of interest (P3-4, P6-9).

Natural Sound helps in Concentration and Focus. Participants ap-
preciated the acoustic nature of Susurrus and suggested it changed
their mood positively. P9 mentioned that they felt relaxed when
listening to natural sounds.

“I tend to concentrate better when I am relaxed. The
natural sounds made me relaxed, so it was easier for me
to answer the questions. It did not feel like a test.” (P9)

Enjoyment and Relaxation with Natural Sounds. Sonification with
natural sounds provided a sense of realism to participants. P11 com-
pared natural sound-based sonification to taking a walk in a park.
P8 appreciated the background white noise in each sonification,
which created the ambiance and provided an immersive experi-
ence. Even participants who performed better using musical notes
preferred natural sounds for long-term use. P4 said,

“Listening to the same artificial monotones [single note
tone] over a long period of time can be monotonous and
tiring. I can imagine natural sounds to be more versatile
and give me more options.” (P4)

Personalizing Natural Sounds. Natural sounds are better suited
for personalization than musical or artificial sounds. Participants
enthusiastically asked us to expand the database of natural sounds
to other kinds of sounds, such as farm animals (P1), trains and
cars (P8), ocean sounds (P3), water drops (P11), and cats
(P5). Participants believed that doing so would help them adjust
sonification to their liking that existing solutions do not offer. For
example, P10 said,

“It will be great if I can set a natural sound to a stock, the
one that I track all the time; I can get used to the sound
and find important information quickly over time. I can
imagine it will also help me remember and refer to data.
It is difficult to remember what happened to a musical
note, but I can easily remember a train or a car.” (P10)

Potential Use Cases for Natural Sounds. Participants mentioned
several use cases for natural sounds beyond sonification. They were
particularly interested in using our technique for navigation (P1,
P5, P7-11).

“The louder the sound is, the closer I am to an object!”
(P6)

P6 thought musical notes were not well suited for such appli-
cations; presumably, natural sounds would be. P3 mentioned that
natural sounds could help them navigate their computers since
screen reader descriptions can sometimes be overwhelming. P3
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Figure 9: NASA-TLX and SUS scores. (a) NASA-TLX score cal-

culated from six workload measures. (b) SUS score calculated

from ten usability measures.

suggested assigning different natural sounds to different tabs so
that they could identify the tabs quickly. Finally, P12, who teaches
BLV high school students, thought scatterplot sonification could
be used with Braille to create a multi-modal interface. P12 said,

“We use Braille graphs or papers where there are mul-
tiple objects, and we ask students to pick out a certain
object. Using audio stimuli with touch would be much
more engaging not only for students but also for teach-
ers. I would prefer natural sounds with spatial position-
ing for that over musical notes because it is more real
and engaging.” (P12)

8.7.5 Perceived Workload. Figure 9a presents NASA-TLX ratings
provided by the BLV participants to the conditions. On average,
participants reported a similar workload for both sonification tools.
For Susurrus, the average NASA-TLX score was 26.6 (CI = [18.1,
34.9]). For Highcharts, the average NASA-TLX score was 23.8 (CI
= [14.4, 35.1]). The small effect size 0.1 (Cohen’s 𝑑) indicates very
small practical difference.

8.7.6 Usability. On average, participants rated both sonification
tools equally in terms of usability (Figure 9b). For Susurrus, the
average SUS score was 75.3 (CI = [68.3, 82.1]). For Highcharts, the
score was 77.4 (CI = [64.8, 87.9]). The small effect size 0.08 (Cohen’s
𝑑) indicates very small practical difference.

9 DISCUSSION

In this section, we first summarize and generalize our study results.
We then discuss design implications, limitations, and future plans
for Susurrus.

9.1 Summary of Study Results

To answer RQ1, we found that Susurrus is better suited than High-
charts to represent bar charts with five or fewer categories. The
standardized effect size (𝑑 = 0.45) indicated a medium effect of
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Susurrus on participants’ performance. Further, in the post-study
interviews, participants suggested that Susurrus made it easier to
compare values in a bar chart since (1) they could compare values
without memorizing them and (2) the sounds were easier to differ-
entiate. We discuss ways to extend Susurrus for more than five data
points in §9.2.2.

We found that Susurrus was equally effective, in comparison to
Highcharts, to represent line charts (RQ2). Based on the post-study
interviews, loudness is an effective mapping for showing trends in
a line chart.

To answer RQ3, we found that participants’ prior musical back-
ground affected their performance. Both experts and non-experts
performed equally when using Susurrus. However, non-experts
struggled with answering questions from pitch-based artificial
sounds. In contrast, experts were highly accurate in discerning
changes in pitch from artificial sounds. This result matched our
intuition since, based on prior research, we anticipated that experts
would better detect pitch changes (§2.2). This disparity in perfor-
mance suggests Susurrus is most useful to participants with no
formal musical background.

Finally, we found that Susurrus improved user experience in
terms of enjoyment, concentration, and relaxation (RQ4). This
result validated our initial motivation to use natural sounds for
sonification. We discuss future work to improve pleasantness with
Susurrus in §9.2.4.

9.2 Design Implications and Future Work

Based on our experience with this work, we outline the following
design implications for future research.

9.2.1 Extending Chart Types. A limitation of Susurrus is that it
currently only supports bar, line, and scatterplots. Although these
are widely used charts, the web features a much wider variety
of visualization (e.g., node-link-based graphs, tree maps, and heat
maps). We believe adopting our technique for a new chart can
be straightforward, or require additional design depending on the
chart type, or may not be feasible. For example, a pie chart can be
considered a radial counterpart of a bar chart and can be sonified
in parallel with little change. However, a node-link-based graph is
more complex and requires a specific task-driven design. In contrast,
a heatmap that encodes 2D spatial data (e.g., correlations ofmultiple
variables) may not be an easy feat. Therefore, it is important to
investigate which aspects of a chart can be sonified easily and
which cannot to raise awareness among visualization researchers
and practitioners.

9.2.2 Parallel Sonification vs. Bandwidth. A key insight of our find-
ings is that natural sounds can sonify categorical data simultane-
ously (i.e., in parallel) but only when the number of categories is
small (e.g., five or fewer). Surprisingly, this limit of five or fewer is in
line with the seminal work on pitch-based auditory displays, where
Pollack reported that the average listener could reliably distinguish
only six pitches [49]. Therefore, the low bandwidth of the human
auditory sense is a common challenge for data sonification, not
unique to Susurrus.

We envision several ways to mitigate these limitations of parallel
sonification. The first is to apply the information-seeking mantra,

“overview first, zoom and filter, then details-on-demand” [58] for
larger datasets. For example, we can first organize data into a vir-
tual hierarchy with a maximum of five items at any level. Consider
20 bars being hierarchically clustered, with the top level containing
5 items and the secondary level containing 4 items each (5 × 4 = 20
items, in total). Susurrus can first play the top-level items in par-
allel to provide an overview of the 20 items. Users can then select
a top-level item and listen to the corresponding secondary-level
items (4 at a time) in parallel. Such a method will open new research
directions, such as finding an effective hierarchical clustering crite-
rion and supporting fluid interaction to navigate the hierarchy. The
fluid interaction can be achieved by a multi-wheel-based input de-
vice (e.g., [62]), where different wheels are dedicated to navigating
different levels.

Another potential solution is data filtering. Users can filter or
manually choose a small subset of data points and use Susurrus to
sonify them in parallel. The filtering method can be supported by
integrating features such as natural language queries [46] and semi-
automated insight generation engines [12]. In the future, we aim
to empirically evaluate these potential solutions to scale Susurrus.

9.2.3 Prior Experience as a Design Dimension. Prior work on ac-
cessible data representation has rarely explored participants’ back-
grounds or experiences during design. However, our findings indi-
cate that individuals’ backgrounds (e.g., musically trained or not)
can significantly affect their ability to extract information from
sonification. We hope our work will motivate future research to
consider this novel design dimension.

9.2.4 Synthesizing Sounds. Blending natural sounds into a single
mix is a significant challenge in this work. To increase the quality
of blending, we experimented with several neural networks. For ex-
ample, we experimented with variational autoencoders to learn the
underlying latent representation of natural sounds, allowing us to
produce these sounds without external noise [52]. However, the re-
sults were not convincing. Future work may explore more advanced
models, such as a hierarchical recurrent variational autoencoder
for learning the latent spaces.

Finally, the sounds used in this paper are collected from freely
available web content. However, these sounds were not originally
designed for data sonification. We believe a dataset of natural sound
sources specifically designed for data sonification will produce a
better mix and increase overall aesthetics. Future work should
curate such a sound library.

9.2.5 New Opportunities: Personalized Data Sonification, Discov-
ering Patterns, and Immersive Data Representation. A secondary
benefit of our technique is that natural sounds can evoke emotions
and give listeners a sense of realism. This can be leveraged to make
personalized data sonification. For instance, participants enthusias-
tically suggested expanding supported themes by adding sounds,
such as car sounds and farm animals, so that they could choose a
theme matching their mood. In contrast, Artificial sounds are less
suitable for customization, except for changing musical instruments
(e.g., changing a guitar sound to a violin). However, this will likely
benefit those with a musical background. Listening to artificial
sounds for a long time can also be monotonous [35]. Thus, natural
sounds can offer a less monotonous, more personalized experience
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to long-term continuous data consumption, such as surveillance or
network traffic data. We believe such personalized experiences will
motivate future research. We lay down this path in Figure 10.

Yet another opportunity is to integrate natural sounds in im-
mersive and multi-modal data representation. Natural sounds com-
monly represent acoustic environments in virtual reality (VR) [28].
Since such environmental sounds can represent abstract data, as we
show in this work, future research can investigate how visualiza-
tion and sonification can be integrated into immersive, accessible
data representation in VR.

sonic mapping

human-made
(instruments)

artificial
(computer)

natural
(nature)

Figure 10: Sonic mapping spectrum for sonification. Many

sonifications use computer-generated artificial sounds (left).

Others use human-made artifacts such as musical instru-

ments (middle). Our work proposes the use of natural sounds

for sonification (right).

10 CONCLUSION

We have presented an approach for using natural sounds for sonifi-
cation, which could be seen as existing on the far end of a spectrum
of sonic mappings whose other end is characterized by artificial,
single-frequency tones (Figure 10). While obviously not based on
a single frequency, natural sounds can represent data. Our work
is grounded in the observation that natural sounds are integrated
into our day-to-day life, are easily distinguishable, and have hedo-
nic values for meditation and well-being. We designed Susurrus,
a sonification tool that uses several intelligent audio processing
functionalities to blend multiple natural sounds into a single coher-
ent sound. To evaluate the tool, we conducted a summative user
study. Our findings indicate that Susurrus improved an individual’s
performance in understanding categorical data and it is most useful
to people who do not have musical training.

POSTSCRIPT

We close this paper with the eternal question: What does the fox
say? A raspy bark, it turns out, or sometimes an eerie scream. Both
would be useful—albeit potentially unsettling—natural sounds for
Susurrus.
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